
浅谈python for循环的巧妙运用(迭代、列表生成式)
我们可以通过for循环来迭代list、tuple、dict、set、字符串,dict比较特殊dict的存储不是连续的,所以迭代(遍历)出来的值的顺序也会发生变化。
迭代(遍历)
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
vlist=['a','b','c']
vtuple=('a','b','c')
vdict={'a': 1, 'b': 2, 'c': 3}
vset={'a','b','c'}
vstr='abc'
for x in vlist:
print('list:',x)
for x in vtuple:
print('tuple:',x)
for x in vdict:
print('dict:',x)
for x in vset:
print('set:',x)
for x in vstr:
print('str:',x)
list: a
list: b
list: c
tuple: a
tuple: b
tuple: c
dict: c
dict: a
dict: b
set: a
set: b
set: c
str: a
str: b
str: c
判断一个对象是可迭代对象可以通过collections模块的Iterable类型判断:
>>> from collections import Iterable
>>> isinstance('abc', Iterable)
True
>>> isinstance([1,2,3], Iterable)
True
>>> isinstance(123, Iterable)
多值for操作
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
print(x,y)
1 1
2 4
3 9
生成下标
>>> for x, y in enumerate(['a', 'b', 'c']):
print(x, y)
0 a
1 b
2 c
生成列表
1.列出1到10的平方列表
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
L=[]
for x in range(1,11):
L.append(x*x)
print(L)[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
python提供了更简便的方法处理这个需求
>>> [x*x for x in range(1,11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
2.添加判断条件
只取列表中的偶数
>>> [x*x for x in range(1,11) if x%2==0]
[4, 16, 36, 64, 100]
3.多个for同时判断
>>> [m+n for m in 'ABC' for n in'abc']
['Aa', 'Ab', 'Ac', 'Ba', 'Bb', 'Bc', 'Ca', 'Cb', 'Cc']
4.获取dict中的value
一般for操作只能获取dict中的key而无法获取到value,可以利用items获取到values
>>> d={'a': 'A', 'b': 'B', 'c': 'C'}
>>> [k + '=' + v for k,v in d.items()]
['c=C', 'a=A', 'b=B']
注意:由于dict是单个key-value所以在for之前不能直接使用k,v for k,v这样代表k,v是多个key而不是指key-value,所以只能进行计算,但是如果计算的话又必须保证key和value是相同的数据类型否则无法进行+操作
针对key和value是不同的数据类型可以使用普通的for循环,使用print输出
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
d={'a': 1, 'b': 2,'c': 3}
for k,v in d.items():
print(k,'=',v)
5.list中所有的字符串变成小写
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
总结
python语法太巧妙了,主要归结于它强大的库,让使用python可以少些很多底层的代码。
以上这篇浅谈python for循环的巧妙运用(迭代、列表生成式)就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11