京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈python for循环的巧妙运用(迭代、列表生成式)
我们可以通过for循环来迭代list、tuple、dict、set、字符串,dict比较特殊dict的存储不是连续的,所以迭代(遍历)出来的值的顺序也会发生变化。
迭代(遍历)
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
vlist=['a','b','c']
vtuple=('a','b','c')
vdict={'a': 1, 'b': 2, 'c': 3}
vset={'a','b','c'}
vstr='abc'
for x in vlist:
print('list:',x)
for x in vtuple:
print('tuple:',x)
for x in vdict:
print('dict:',x)
for x in vset:
print('set:',x)
for x in vstr:
print('str:',x)
list: a
list: b
list: c
tuple: a
tuple: b
tuple: c
dict: c
dict: a
dict: b
set: a
set: b
set: c
str: a
str: b
str: c
判断一个对象是可迭代对象可以通过collections模块的Iterable类型判断:
>>> from collections import Iterable
>>> isinstance('abc', Iterable)
True
>>> isinstance([1,2,3], Iterable)
True
>>> isinstance(123, Iterable)
多值for操作
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
print(x,y)
1 1
2 4
3 9
生成下标
>>> for x, y in enumerate(['a', 'b', 'c']):
print(x, y)
0 a
1 b
2 c
生成列表
1.列出1到10的平方列表
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
L=[]
for x in range(1,11):
L.append(x*x)
print(L)[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
python提供了更简便的方法处理这个需求
>>> [x*x for x in range(1,11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
2.添加判断条件
只取列表中的偶数
>>> [x*x for x in range(1,11) if x%2==0]
[4, 16, 36, 64, 100]
3.多个for同时判断
>>> [m+n for m in 'ABC' for n in'abc']
['Aa', 'Ab', 'Ac', 'Ba', 'Bb', 'Bc', 'Ca', 'Cb', 'Cc']
4.获取dict中的value
一般for操作只能获取dict中的key而无法获取到value,可以利用items获取到values
>>> d={'a': 'A', 'b': 'B', 'c': 'C'}
>>> [k + '=' + v for k,v in d.items()]
['c=C', 'a=A', 'b=B']
注意:由于dict是单个key-value所以在for之前不能直接使用k,v for k,v这样代表k,v是多个key而不是指key-value,所以只能进行计算,但是如果计算的话又必须保证key和value是相同的数据类型否则无法进行+操作
针对key和value是不同的数据类型可以使用普通的for循环,使用print输出
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
d={'a': 1, 'b': 2,'c': 3}
for k,v in d.items():
print(k,'=',v)
5.list中所有的字符串变成小写
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
总结
python语法太巧妙了,主要归结于它强大的库,让使用python可以少些很多底层的代码。
以上这篇浅谈python for循环的巧妙运用(迭代、列表生成式)就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19