京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业智能只是一种解决方案
商业智能描述了一系列的概念和方法,提供使企业迅速分析数据的技术和方法,包括收集、管理和分析数据,将数据转化为有用的信息并根据需要进行分发,从而辅助商业决策的制定。
每个企业面临的数据环境、业务内容和决策需求都是不同的,因此,商业智能(BI)不是一种确定的技术,更不是一个或一套具体软件,而是针对每个企业的实际情况而规划与构建的数据分析和决策辅助解决方案。能够充分认识到这一点,对商业智能厂商和企业客户都会有所帮助。
对于商业智能厂商来说,商业智能解决方案囊括了数据获取、集成、分析以及分发等环节的一系列技术和应用,不但包括报表、DashBoard、即席查询、OLAP、记分卡、可视化分析、预测及挖掘模型、模拟推演模型等报告及分析手段,而且还包括元数据管理、数据抽取、数据仓库、移动应用、
搜索集成、Office集成、安全及协作等相关支撑技术和方案,整个体系非常庞大。因此,与注重发展和宣传产品套件的完整性和全面解决能力相比,商业智能厂商更应该注意以下几点:
1)如果已经在涉及商业智能技术和应用的某方面具有一定的积累或相对领先的地位,则首先必须最大限度的提高自己特长的方面,其次才是量力而行的扩大在商业智能解决方案中覆盖的范围。新晋的厂商或者并不具有优势的厂商,更应该根据自身运作能力做好产品定位,适当聚焦以期发展。倾向于提供全面解决方案所需的所有环节的产品或技术,则势必正面与拦在前面的几大巨头残酷交锋。要时刻牢记细分领先比全面铺开更重要,市场的规律是第一名吃肉,第二名啃骨头,第三名喝汤,其余则苟且生存。从国内市场经验来看,商业智能市场的细分领域还存在不少空白。这些年在商业智能领域不断涌现的新说法(内存计算BI、快速BI、自助式BI、可视化分析工具等等),就是对细分市场的有效挖掘(而非全面替代)。
2)在企业里经常存在来自多家商业智能厂商的产品和技术共存的现象,使用各自专长的方面共同构成企业的商业智能解决方案,同时,还存在与企业的其他应用系统集成的需求,比如统一身份认证、Portal、CMS等。因此,需要注意产品的开放性和扩展开发能力,在接触的商业智能项目里,系统组合或集成的案例并不少见。
3)现在已经进入商业智能应用细耕时期,应注重行业经验积累及应用实践,形成有效的方法论和最佳实践,提高交付能力、交付质量和交付效率,能够切实针对企业的数据环境、业务状况及管理需求交付合适的方案,而不仅仅是售卖产品,以及自顾自说的方案。
对企业客户来讲,则需要注意以下几点:
1)规划+软件+实施,多个方面齐头并进才能构建出良好的商业智能解决方案,因此企业客户要对这几个环节同时重视,尤其要给各环节分配合适的预算,经验证明往往许多客户要么不重视前期规划工作,没搞清楚项目的目标及范围,要么仅购买商业智能软件工具就几乎耗尽预算而留给实施极低的预算比例。
2)参与你的商业智能项目建设。正如好的总成和配件不一定能装配出好车,好的工具也不代表好的解决方案;同样,厂商的方法论或最佳实践再好,都需要企业用户深入参与,才能构建出你自己的商业智能,尤其是在前期规划和蓝图阶段、需求阶段、实施阶段的各个检查点及用户测试阶段,必须大量投入各环节的人力和精力认真参与。在既往实施的一些项目中,用户既对即将构建的的商业智能系统寄予厚望,同时参与的程度却远远不足。
3)要注重商业智能系统的运维和演进,避免形成死的商业智能。没有一成不变的业务,也就没有一成不变的系统。在企业运作过程中,业务内容、管理需求、数据环境等各方面都不断发生变化,正如再好的汽车也需要保养,商业智能系统极其内容也需要进行持续的维护,很多商业智能项目失于维护,经过半年左右的时间后系统逐渐被搁置一旁。同时,经过一段较长时期后,企业新的管理和业务需求有所积累时对系统进行适当的重构与演进,根据项目经验,这种级别的重构演进周期一般是1年半到2年开展一次。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14