
对大数据毫无贡献的人群 该何去何从
人类日常生活的数据信息,主宰着越来越多的商业决策。那么对大数据毫无贡献的人群,又该何去何从?
大数据时代,不少人担心自己的私人生活受到形形色色的监控、追踪,进而简化为数据点,经过一番运算,用于见不得人的政府或企业勾当。
另一方面,相对脱离数字世界的人群却可能面临完全相反的问题,根据《斯坦福法律评论》(StanfordLawReview)最近刊载的一篇文章表明,该群体缺乏关注。
“大数据对没有被它吞噬的群体也构成一定风险,这个群体的信息没有得到定期的收集、整理或提取。”美国国务院法律顾问乔纳斯?勒曼(JonasLerman)写道。
曾几何时,日益膨胀的大众数字资料大部分被商家所用,作为提供个性化广告和优惠券信息的参考,谁管你需不需要这个信息?
然而今时今日,“大数据”分析渐渐影响着各种重大决策,决定着人类的生活方式和机遇。通过背靠数据预测未来,零售商确定了新店地点和商品价格,企业设计出了新产品,政治家制定投票率策略,分析家研究出疾病传播方式与恐怖分子的动向。甚至是白宫也发起一项价值2亿美元的计划,旨在帮助决策机构从大数据中“获取、整理并推断出结论。”
对勒曼来说,组织这些数据力量是为了给“大数据边缘”人群创造全新形式的无声主义,将显着放大现有的地理、经济及社会阶层的不平等现象,并将影响数据集结果,使其偏向大多数群体。
“这可能重组社会架构,将来唯一事关紧要的人群、唯一有数据价值的人群,是会定期为正确的数据流做出贡献的人群。”
勒曼列举两个假设个体,作为例子:
01:一位居住在曼哈顿的30岁白领。她使用Facebook、谷歌、网飞(Netflix)和亚马逊,拥有借记卡、信用卡、购物卡、公交卡、以及在汽车仪表板上电子支付通行费的快易通(EZpass)。智能手机里和车载的GPS导航系统引导她走天下。
02:一名散工,居住在美国最穷城市—新泽西州卡姆登市,距离曼哈顿2个小时的车程。他的工作酬劳以现金私下结算,没有手机、有线电视和电脑。他坐公车付现金,家里没有车,偶尔在图书馆上网。
勒曼指出,今天很多大数据工具都经过校准,专门针对“足迹遍布数字世界的”曼哈顿人。“大数据所塑造的世界会考虑曼哈顿人的习惯和偏好,会慢慢演变成属于她的世界。但目前,大数据忽略了我们卡姆登的兄弟们。”他认为,随着大数据进一步重整政府与市场秩序,卡姆登等地区的居民将被逐出机遇之门,甚至连民主参与也无福消受。
解决方案还是有的。他提出,方案一是确保决策者在设计新的公众安全项目时,能够在大数据途径之外考虑到未能深入数字世界的群体。最终,联邦政府甚至可能通过与2008年《反基因歧视法》(由布什总统签署,禁止人寿保险公司以某人具有对某种疾病的易感基因为由,取消、拒绝对他进行保险或提高保险费用,禁止雇主以遗传信息为依据进行雇佣、解聘、升职、加薪,或做出任何与雇佣行为有关的决定)类似的新民权法案。
他最后强调,“要确保大数据革命是一场公平的革命,其益处能够得到广泛、合理的分配,我们可能还需要保证少数群体不被遗忘、不被排斥的权利。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28