京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据、云存储的时代已经来临
在文章中,笔者简单阐述了两种监控摄像目前的市场状况,也谈到了高清监控设备产生的海量数据,对存储设备的冲击。在流量较少的区域,采用支持移动侦测的监控摄像机,确实能为后端存储设备减轻压力,但对于要求7*24小时工作的监控摄像机来说,压力似乎还是存在的,如何缓解并有效的管理这些数据,成了目前安防企业需要考虑的问题。
口号OR行动
云计算、大数据、云存储等概念相继提出,立刻成为时下的热点话题,几乎各行各业都对它未来的发展,提出了美好的设想。
确实如此,大数据、云存储的深入发展,确实给高清监控设备产生的大量数据带来了福音,不仅有效的存储及管理数据,而且这些海量数据不再是孤立的,所有安防数据可以实现资源共享,为后期大量的分析提供数据支撑。
对于安防企业的影响
对于安防企业,首先在营销模式上会发生变化,企业不再单一的为用户提供设备,可以由服务着手。安防厂商可以为用户设计方案并提供设备,用户只需按期向安防企业缴纳服务费,相当于把企业的安防部分托管给安防厂商,企业本身也不必再为这些复杂而专业的问题苦恼。对于安防企业,用户增加了对自己的依赖,为后期的二次营销带来可能。
对于托管服务,早已不是什么新鲜事,众多企业都将人力、IT服务外包给专业公司,由他们帮忙打理这些琐碎的杂事,而企业自身只会专注属于自已的领域。
对各行业的影响
对于道路交通。
智能交通概念的提出,不仅仅是道路的监控,其涉及的是人、车、路三者的关系,如何有效的管理他们的关系,成为城市发展的重要因素。
众所周知,城市化道路压力日益严重,道路拥堵不堪,智能化交通势在必行。但海量的交通数据对于监管部门来说,压力不是一般的大,大数据、云存储的应用,对于智能交通的数据共享提供了可能,通过智能分析功能,监管部门可以清楚哪条道路在什么时间段内拥堵最为严重,哪段道路多出现交通事故,对于针对性的监管提供了数据支持,可以在事故多发路段假设警示牌等。
对于医疗行业。
智慧医疗概念的提出,立刻引起轩然大波,最近网上有关医疗安防的信息非常多,如何有效的处理医患之间的关系,也是智慧医疗重点的研究问题。
针对挂号难这一问题,各大医院已经纷纷出台网上挂号平台,大大减轻了挂号窗口的压力,在挂号大厅,医院也设立的多台挂号机,也缓解大量就医人员的挂号问题。
挂号平台、挂号机的应用,是向智慧医疗平台的过度阶段,相信不久的将来,医疗行业会融入更多高新技术,使医疗服务更智能化。大数据的应用,对于医疗行业也有很大的帮助,能有效的分析目前医疗技术的走势、哪种疾病在什么季节多发等等。
对于学校。
学校的安全问题,一直以来是监管部门管理的重点,学校暴力事件时有发生,青少年叛逆思想严重,如何有效的管理校园安全,也是当下亟待解决的问题。
除了保护学生安全,对于校内盗窃案件的发生也有很大帮助。大数据、云计算的深入应用,帮助学校分析校园安全,青少年暴力事件发生频率及阶段,都有极大的借鉴意义。
对于公安系统。
社会的安全稳定,可以为人们提供一个良好的居住环境,但犯罪事件时有发生 ,犯罪形式更是多种多样,如何行之有效的管理及监控不法分子,是相关管理人员考虑的头等大事。
在重点路段、街道部署监控摄像机,对刑事案件的侦破提供了更多依据,能够有效的减少犯罪事件的发生。大数据、云计算的应用,针对海量监控资料进行智能分析,有效的分析犯罪事件的多发地点、多发时间,弥补监控系统的空白区域,争取做到零死角监控,减少犯罪事件的发生,保障大家的安全。
大数据、云存储的相继应用,对于安防监控行业发展意义重大,云存储不仅可以有效的存储大量数据,还能通过智能化分析,为各行各业提供数据支撑。在未来,大数据、云存储在智慧城市、物联网、智慧医疗、智能交通领域,一定会大放异彩。大数据、云存储的时代已经来临,云安防还会远么?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27