京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据其实没那么有用,但是炒作它的人确实是都赚钱了
正在好几条战线上对技术巨头发起挑战的欧盟竞争委员会专员Margrethe Vestager又开辟了一条新的:“大数据”。
她在接受《华尔街日报》采访中把数据拎出来作为一项重要的竞争优势,称英国在反垄断审查和调查中予以更认真的考虑。不幸的是,如果担心大数据引发隐私问题还是合理,如果对基本上没有根据的大数据炒作过于买账的话,就是担心过头了。
她告诉《华尔街日报》说:“在一些领域,这些数据是非常有价值的。它们可以形成市场壁垒——让拥有数据的一方获得别人所没有的巨大商业机会。”她还补充说Google、Facebook甚至德国车企宝马公司等,因为它们正在积累的数据以及这些数据帮助它们抵达客户和降低成本,会对竞争对手形成不公平优势。
这一观点是这样一个概念的延伸。大家普遍认为,我们是用自己的数据来换取免费服务,而提供服务的公司可以很轻易地将这些数据转化成金钱——比方说,通过广告的精准定向投放来商业化。但事实是这种炒作转换为现金要比实际数据转化为金钱更加容易。
2011年,麦肯锡推出了一份报告,报告炒作了大数据的商业潜能,预测称它将成为“竞争的关键基础”。这家公司说如果零售商能够利用好它的潜能的话,可以将营业利润提高60%。这会是微定向(microtargeting)和“库存和定价自动对线上线下销售做出实时调整”的直接结果。
2016年,麦肯锡又弄了一份报告来调整上次的预测,称“因为缺乏分析人才”以及“企业内部的数据烟囱”,美国零售商只实现了大数据相关潜能的30%到40%。然而即便是这样的评价仍然是高估的论断。美国零售业今天的营业利润比2011年的时候还低了一点。哪怕是被麦肯锡在2016年报告中称赞为大数据技术早期采用者的沃尔玛,最近几年在营业利润方面也没有任何像样的增长。
没有大数据驱动出来的繁荣
沃尔玛最近几年的营业利润并没有反映出数据驱动技术带来了更大的回报
如果Google和Facebook使用的大数据真的帮助了制造商和零售商的话,那么在这些公司很强势的国家里零售收入应该会出现显著增长才对。但这种情况并没有发生。Google和Facebook倒是变得越来越大,但美国的零售销售却已经停滞,并且低于历史水平。
数据驱动革命?没听说过
美国零售销售复合年增长情况(剔除季节性因素后)
对于大数据炒作这个当然不是一个完全科学的论断。其他因素,比如经济加剧、经济条件等也会连累到数据驱动给零售利润和规模带来的增长。所以在缺乏对大数据对公司表现影响的最近研究的情况下,说这个结论不可知也许是谨慎的做法。从宏观层面来说,并没有这种效应存在的迹象——而且也没有明显受益的公司,除了那些专门销售其大数据知识的公司,比如Google和Facebook。
从直观上来看,分析客户数据显然应该能带来商业优势。2014年麦肯锡资助的一项研究发现,零售商一般都同意这一点。然而,这并不意味着我们今天所熟知的大数据——有关个人上网习惯、可追溯几年的购物历史情况、社交网络文章和互动的信息——可以给试图利用它的公司带来任何的优势。这种信息的一个主要问题是“垃圾进去垃圾出来”。此外,任何曾经买过比方说钱包的人事后都会被钱包广告狂轰滥炸几个星期,这说明基于历史的定向营销其实没太大意义。Google和Facebook的定向广告并不比传统媒体历史悠久的针对特定类型内容受众的宽松定向广告产品好多少。
当然,知识仍然是力量。有朝一日那些公司也许能收集到有关我们的足够多的有用信息,然后用到显著提升销售上。找到这种办法的公司将获得理所应得的竞争优势,这种优势像Vestager这样的监管者未必就能化解得了。我怀疑这需要客户和数据收集者进行合作:没有这种合作的话,会有太多的大数据是错的、不充分的或者根本就是无用的。比方说,如果大家放弃信息自愿性,就能拿到一点广告收入或者产品的折扣的话——就没有理由去限制企业拿这些数据可以做什么。
不过,在目前的情况下,使用蛇油并不能给你带来竞争优势。它只会让卖蛇油的人富得流油。监管者感兴趣的应该是这种企业——但反垄断者未必需要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22