京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当“大数据”落地,当技术接轨商业
这些书中,公认的以舍恩伯格的《大数据时代》为“国外大数据系统研究的先河之作”、“迄今为止关于大数据最好的一部着作”,那么,在众多所谓的“《大数据时代》之后必读之作”的书单中,大卫·芬雷布的《大数据云图》则更胜一筹、实至名归。它开启了大数据从理念启蒙到商业应用的时代,而身为作者、同时也是大数据集团(Big Data Group)创始人的大卫?芬雷布的被业界誉为“大数据商业应用引路人”.究竟,他指引了什么,贡献了什么?
首先就是“大数据云图”(Big Data Landscape),这也是中文版的书名(英文原版书名Big Data Demystified,直译为“掀开大数据面纱”)。为了让更多人理解大数据,并从中得到启发和受益,芬雷布和他的合伙人通过对包括网络科技新贵、传统商业巨头在内的数百家公司进行了跟踪、评估,绘制了一幅大数据领域应用全景图,也就是着名的“大数据云图”,而且每隔一定周期进行更新。通过它,我们可以知道现有各家企业在大数据领域扮演了什么角色,做了什么,以及有哪些空白等待后人去填补。也就是说,大数据的商机在哪,一看云图便知。随着“大数据云图”的广泛流传,大卫·芬雷布声名鹊起,找上门的咨询业务也络绎不绝。于是,芬雷布就从早先的“科技创业者”(他先后创办数家科技公司,很多被大公司收购)一下子变成了“科技引路人”.
其次在于“可视化”,芬雷布提出,它是“数据中发掘机遇的重要工具”.这一点有别于一般的大数据着述。在芬雷布看来,将信息可视化能有效抓住人们的注意力。“有的信息如果通过单纯的数字和文字来传达,可能需要花费数分钟甚至几小时,甚至可能无法传达;但是通过颜色、布局、标记和其他元素的融合,图形却能够在几秒钟之内就把这些信息传达给我们”.可视化是压缩知识、传递信息的一种方式。芬雷布提到了“数据界的达·芬奇”的爱德华·塔夫特,后者早在20世纪出版了《定量信息的视觉展示》一书,而该书就是“以视觉方式传递数据信息”的经典着作。而芬雷布专门花了一章的篇幅阐述“数据可视化”,其意义在于,强调了大数据理性之余的感性一面。事实上,大数据界的许多观点显然偏离了这点,常常倒向模型、算法、数学这一边。芬雷布的这一观点与IBM等业界英雄所见略同,而从理论上的“数据可视化”到实践中的“大数据云图”,芬雷布走在了前面。
不过,仅仅有方法论是不够的,首要的得在观念和思维上有所改变。例如维克托·舍恩伯格在《大数据时代》中要人们在逻辑上放弃“因果”转而“相关”,冯启思在《数据统治世界》里在统计学上提出要“关注异常值,而非平均数本身”(特别是小概率的力量)。在《大数据云图》中,芬雷布将“大数据”推向了极高的位置,视其具有决定下一个大机遇的重大战略意义。他说,数据、算法和速度让计算机能作出更好的决策和预测,从商业到生活甚至到飘忽不定的感情,一切都可以分析。
基于大量实证案例的支撑,芬雷布完全有这样的乐观和自信看待大数据的未来。在书中提到的许多公司应用中,不难发现在研发设计到管理销售,从教育、医疗到电子、汽车再到音乐、建筑,大数据的影子无处不在、并且发挥着不可忽视的作用。而像亚马逊、谷歌、IBM、Facebook、LinkedIn、Twitter、Netflix等公司对大数据的应用已经习以为常、开始得心应手。例如作为社交网络巨擎的Facebook 使用大数据来追踪用户在其网络的行为,通过识别你在它的网络中的好友,从而给出新的好友推荐建议,用户拥有越多的好友,他们与 Facebook之间的黏度就越高。更多的好友意味着用户会分享更多照片、发布更多状态更新、玩更多的游戏。像商业社交网站LinkedIn则使用大数据在求职者和招聘职位之间建立关联。有了LinkedIn,猎头们再也不用向潜在的受聘者打陌生电话来碰运气,而可以通过简单的搜索找出潜在受聘者并联系他们。与此相似,求职者也可以通过联系网站上其他人,顺利地将自己推销给潜在的雇主。可以这么说,现在业界对于大数据的认识可不再是“数据大”或者Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)的“4V”这么简单、表面化了。大数据“真的”广泛进入商用。至于对比舍恩伯格《大数据时代》中提到的应用实例,《大数据云图》更新颖、更前沿、更接近正在发生的未来。
不仅如此,除了“大数据将影响所有方面”外,大卫·芬雷布至少以下两个观点值得注意。第一,他认为下一个获得重大发展的是在应用领域,这个领域通过各种技术的手段,能够真正的把数据变成生产力。过去的几年中,大部分的投资都是在数据基础设施方面,未来人们会看到在应用层有更大的发展。第二,他介绍自己喜爱铁人三项运动(游泳、骑车、跑步),平时通过技术手段,将自己在整个运动过程中产生的数据进行搜集和分析,这里面包括了运动过程中的热量、心率、运动的轨迹、跑的长度等,然后不断自我优化、自我提升。通过这个现身说法,芬雷布实际上指出了可穿戴智能设备对大数据应用的推波助澜的作用。这也可以理解为,下一步移动互联时代,大数据是随时随地的、无时无刻的。商家通过把越来越多的移动端放到消费者的手里,更好的了解消费者在移动端和各个场景中的消费习惯。这意味着,在未来几年中,大数据与移动终端、与云计算的结合,将会孕育更多的商机,会有更多的新的创业者在这个方向开创出新的企业和事业。对此,在《大数据云图》中,专门有一章就叫“谁是下一个上市的数十亿美元项目”.
当“大数据”落地,当技术接轨商业,芬雷布向我们展示了一场已经发生而且将影响深远的商业变革。对于读者而言,应该心领神会:在理想情况下,企业应当具备一种能够让数据分析贯穿于整个组织的视野,分析应该尽可能地接近实时。通过观察谷歌、亚马逊、Facebook和其他科技领袖企业,我们看到了大数据之下的无限可能--当务之急,现在需要做的就是让企业尽快融入大数据战略中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15