京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据和云计算之间那点儿非同一般的关系
大数据是一个通用术语,用来指当前业务领域中存在的各种数据。从医疗机构的数字数据和记录到政府机构的大量文件,人们把这些文件存档供将来参考,技术为我们提供了一个面向服务的架构来分析这些信息。大数据是永远不可能被归档到在个描述或定义下。关于信息技术的神器之处在于,它始终在不断发展,并且可供愿意接受信息技术的公司使用。另一方面,云计算的发展使得商业企业更容易获得可负担得起的软件包。云计算的使用大大降低了存储公司信息的成本,这也带来了小型企业可以利用的多个应用程序。
自互联网诞生以来,随着云计算的不断发展,互联网上广泛的信息爆炸式增长。标准用户和数字营销人员现在可以每天使用社交媒体营销平台来生成大量关于消费者的信息。有时,对于机构和企业来说,管理每天生成和存储的数据量就是一项相当艰巨的任务。例如,每天创建2.5万亿字节的数据,这可能会给云计算带来存储和排序挑战。
这正是大数据用来管理海量数据如何通过云计算存储的地方。总而言之,这两种技术形式提供的解决方案既适应业务分析、也适用于大数据。在这篇文章中,将重点介绍如何使用大数据和云计算来管理政府机构和商业机构日常生成的大量数据。
可购性
对于那些预算计划比较紧张,但又需要更新技术的企业或机构来说,云技术可能是解决燃眉之需的一大利器。用于管理大数据的成本资源,即使是小公司,也在预算之内,而且在市场上也很容易找到合适的产品。在云计算出现之前,商业机构和政府机构花费大笔资金建立信息技术部门来管理数据,甚至花更多的时间来更新这些IT系统。今天,由于技术的进步,企业可以把他们的大数据托管在异地的服务器上,或者按需支付。
敏捷性
传统的数据存储和管理方法正变得越来越难以管理,因为数据存储和管理非常慢,需要公司花费大量时间从中检索信息。有时,安装和运行服务器可能需要几周甚至几个月的时间。云计算的出现有可能为企业或机构提供所需的全部存储需求。一个基于云计算的公司数据库可以在几分钟内完成安装,并将数据存储在数千个虚拟服务器中,在这些服务器中,只有一台计算机或移动设备和互联网连接的人可以很轻松访问它。
海量数据的爆炸式增长带来了管理数据的挑战。例如,社交媒体会产生大量的数据,这对于在推文、帖子、博客或照片等类别中进行处理来说是具有挑战性的。对于大数据,有一些分析平台,比如Apache Hadoop,可以在将非结构化数据存储到云中之前处理这些数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27