
Python使用openpyxl读写excel文件的方法
本篇文章主要介绍了Python使用openpyxl读写excel文件的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
这是一个第三方库,可以处理xlsx格式的Excel文件。pip install openpyxl安装。如果使用Aanconda,应该自带了。
读取Excel文件
需要导入相关函数。
from openpyxl import load_workbook
# 默认可读写,若有需要可以指定write_only和read_only为True
wb = load_workbook('mainbuilding33.xlsx')
默认打开的文件为可读写,若有需要可以指定参数read_only为True。
获取工作表--Sheet
# 获得所有sheet的名称
print(wb.get_sheet_names())
# 根据sheet名字获得sheet
a_sheet = wb.get_sheet_by_name('Sheet1')
# 获得sheet名
print(a_sheet.title)
# 获得当前正在显示的sheet, 也可以用wb.get_active_sheet()
sheet = wb.active
获取单元格
# 获取某个单元格的值,观察excel发现也是先字母再数字的顺序,即先列再行
b4 = sheet['B4']
# 分别返回
print(f'({b4.column}, {b4.row}) is {b4.value}') # 返回的数字就是int型
# 除了用下标的方式获得,还可以用cell函数, 换成数字,这个表示B2
b4_too = sheet.cell(row=4, column=2)
print(b4_too.value)
b4.column返回B, b4.row返回4, value则是那个单元格的值。另外cell还有一个属性coordinate, 像b4这个单元格返回的是坐标B4。
获得最大行和最大列
# 获得最大列和最大行
print(sheet.max_row)
print(sheet.max_column)
获取行和列
sheet.rows为生成器, 里面是每一行的数据,每一行又由一个tuple包裹。
sheet.columns类似,不过里面是每个tuple是每一列的单元格。
# 因为按行,所以返回A1, B1, C1这样的顺序
for row in sheet.rows:
for cell in row:
print(cell.value)
# A1, A2, A3这样的顺序
for column in sheet.columns:
for cell in column:
print(cell.value)
上面的代码就可以获得所有单元格的数据。如果要获得某行的数据呢?给其一个索引就行了,因为sheet.rows是生成器类型,不能使用索引,转换成list之后再使用索引,list(sheet.rows)[2]这样就获取到第二行的tuple对象。
for cell in list(sheet.rows)[2]:
print(cell.value)
如何获得任意区间的单元格?
可以使用range函数,下面的写法,获得了以A1为左上角,B3为右下角矩形区域的所有单元格。注意range从1开始的,因为在openpyxl中为了和Excel中的表达方式一致,并不和编程语言的习惯以0表示第一个值。
for i in range(1, 4):
for j in range(1, 3):
print(sheet.cell(row=i, column=j))
# out
<Cell mainbuilding33.A1>
<Cell mainbuilding33.B1>
<Cell mainbuilding33.A2>
<Cell mainbuilding33.B2>
<Cell mainbuilding33.A3>
<Cell mainbuilding33.B3>
还可以像使用切片那样使用。sheet['A1':'B3']返回一个tuple,该元组内部还是元组,由每行的单元格构成一个元组。
for row_cell in sheet['A1':'B3']:
for cell in row_cell:
print(cell)
for cell in sheet['A1':'B3']:
print(cell)
# out
(<Cell mainbuilding33.A1>, <Cell mainbuilding33.B1>)
(<Cell mainbuilding33.A2>, <Cell mainbuilding33.B2>)
(<Cell mainbuilding33.A3>, <Cell mainbuilding33.B3>)
根据字母获得列号,根据列号返回字母
需要导入, 这两个函数存在于openpyxl.utils
from openpyxl.utils import get_column_letter, column_index_from_string
# 根据列的数字返回字母
print(get_column_letter(2)) # B
# 根据字母返回列的数字
print(column_index_from_string('D')) # 4
将数据写入Excel
工作表相关
需要导入WorkBook
from openpyxl import Workbook
wb = Workbook()
这样就新建了一个新的工作表(只是还没被保存)。
若要指定只写模式,可以指定参数write_only=True。一般默认的可写可读模式就可以了。
print(wb.get_sheet_names()) # 提供一个默认名叫Sheet的表,office2016下新建提供默认Sheet1
# 直接赋值就可以改工作表的名称
sheet.title = 'Sheet1'
# 新建一个工作表,可以指定索引,适当安排其在工作簿中的位置
wb.create_sheet('Data', index=1) # 被安排到第二个工作表,index=0就是第一个位置
# 删除某个工作表
wb.remove(sheet)
del wb[sheet]
写入单元格
还可以使用公式哦
# 直接给单元格赋值就行
sheet['A1'] = 'good'
# B9处写入平均值
sheet['B9'] = '=AVERAGE(B2:B8)'
但是如果是读取的时候需要加上data_only=True这样读到B9返回的就是数字,如果不加这个参数,返回的将是公式本身'=AVERAGE(B2:B8)'
append函数
可以一次添加多行数据,从第一行空白行开始(下面都是空白行)写入。
# 添加一行
row = [1 ,2, 3, 4, 5]
sheet.append(row)
# 添加多行
rows = [
['Number', 'data1', 'data2'],
[2, 40, 30],
[3, 40, 25],
[4, 50, 30],
[5, 30, 10],
[6, 25, 5],
[7, 50, 10],
]
由于append函数只能按行写入。如果我们想按列写入呢。append能实现需求么?如果把上面的列表嵌套看作矩阵。只要将矩阵转置就可以了。使用zip()函数可以实现,不过内部的列表变成了元组就是了。都是可迭代对象,不影响。
list(zip(*rows))
# out
[('Number', 2, 3, 4, 5, 6, 7),
('data1', 40, 40, 50, 30, 25, 50),
('data2', 30, 25, 30, 10, 5, 10)]
解释下上面的list(zip(*rows))首先*rows将列表打散,相当于填入了若干个参数,zip从某个列表中提取第1个值组合成一个tuple,再从每个列表中提取第2个值组合成一个tuple,一直到最短列表的最后一个值提取完毕后结束,更长列表的之后的值被舍弃,换句话,最后的元组个数是由原来每个参数(可迭代对象)的最短长度决定的。比如现在随便删掉一个值,最短列表长度为2,data2那一列(竖着看)的值全部被舍弃。
rows = [
['Number', 'data1', 'data2'],
[2, 40],
[3, 40, 25],
[4, 50, 30],
[5, 30, 10],
[6, 25, 5],
[7, 50, 10],
]
# out
[('Number', 2, 3, 4, 5, 6, 7), ('data1', 40, 40, 50, 30, 25, 50)]
最后zip返回的是zip对象,看不到数据的。使用list转换下就好了。使用zip可以方便实现将数据按列写入。
保存文件
所有的操作结束后,一定记得保存文件。指定路径和文件名,后缀名为xlsx。
wb.save(r'D:\example.xlsx')
设置单元格风格--Style
先导入需要的类from openpyxl.styles import Font, colors, Alignment
分别可指定字体相关,颜色,和对齐方式。
字体
bold_itatic_24_font = Font(name='等线', size=24, italic=True, color=colors.RED, bold=True)
sheet['A1'].font = bold_itatic_24_font
上面的代码指定了等线24号加粗斜体,字体颜色红色。直接使用cell的font属性,将Font对象赋值给它。
对齐方式
也是直接使用cell的属性aligment,这里指定垂直居中和水平居中。除了center,还可以使用right、left等等参数。
# 设置B1中的数据垂直居中和水平居中
sheet['B1'].alignment = Alignment(horizontal='center', vertical='center')
设置行高和列宽
有时候数据太长显示不完,就需要拉长拉高单元格。
# 第2行行高
sheet.row_dimensions[2].height = 40
# C列列宽
sheet.column_dimensions['C'].width = 30
合并和拆分单元格
所谓合并单元格,即以合并区域的左上角的那个单元格为基准,覆盖其他单元格使之称为一个大的单元格。
相反,拆分单元格后将这个大单元格的值返回到原来的左上角位置。
# 合并单元格, 往左上角写入数据即可
sheet.merge_cells('B1:G1') # 合并一行中的几个单元格
sheet.merge_cells('A1:C3') # 合并一个矩形区域中的单元格
合并后只可以往左上角写入数据,也就是区间中:左边的坐标。
如果这些要合并的单元格都有数据,只会保留左上角的数据,其他则丢弃。换句话说若合并前不是在左上角写入数据,合并后单元格中不会有数据。
以下是拆分单元格的代码。拆分后,值回到A1位置。
sheet.unmerge_cells('A1:C3')
这里就拿常用的说,具体的去看openpyxl文档
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01