京公网安备 11010802034615号
经营许可证编号:京B2-20210330
百度大数据实验室范伟:如何打造大数据生态圈
在日前举行的百度世界大会上,百度喊出了近来互联网界颇为流行的“生态”口号。百度的“生态”与视频、手机、电视没有关系,它要建立的是连接3600行的大数据生态圈。
“百度是天然的大数据公司,覆盖全网6亿网民,每天响应60亿次搜索请求,150亿次定位请求。”百度大数据实验室副主任范伟表示。然而,然而如何在海量信息中准确甄别信息、计算相关信息、快速反馈信息,仍是技术研发人员面临的严峻考验。
大数据问诊
百度日前发布了慧医疗、慧城市、慧创业三款应用。能否以“慧医疗”为例,为我们介绍下,百度采用了哪些技术?大数据又是如何应用的呢?
慧医疗其中的一项应用是深度医疗对话机器人,通过语音输入或在应用界面输入文字,用户可以和机器人进行对话。你输入自己的疾病症状,她可以对你的疾病进行分析,并根据你的需求提供建议或帮助。重要的是,当用户意图和信息不明确时,深度对话机器人会智能的揣摩用户意图,引导用户。在充分理解,用户需求后,提供用户需要的信息。
机器人对用户问题的回答都是以大数据为基础的。网上有两类医疗信息,一类是病人之间的信息共享,一类是医生之间的信息交流。专业的医疗信息虽然能在网上和医书里获取,但内容十分有限。比如网上关于心脏病、糖尿病的信息很多,但是关于心脏搭桥的信息就很少。这些信息鱼龙混杂,重要的是进行信息甄别,对信息的可信度进行分析。可信度分析也是通过数据计算出来,比如有多少人参考了这个答案,这个人回答过多少问题,他(她)回答问题的所用的词汇分析等等。核实后的信息会整合成一个类似的知识库,每条信息都有个0-1间的可信度。用户提出的问题,都用库里的信息作为基础回答。
提问和回答之间如何做到信息匹配呢?
用户提问的意图也有很多种,我们系统里大概有数十种用户意图的分类,比如说你想知道是什么病,还是想知道吃什么药,自己怎样调养。但是有时候用户提问的意图并不明确,例如“我今天不舒服”。这样我们的系统会和用户进一步揣摩、明确意图,例如问他(她)是想获得治疗信息、疾病知识,还是医生信息,再提供服务。我们的意图模型,利用基于深度学习的建模,精准率达到了90%多。
目前市场上移动医疗的应用程序也很多。慧医疗所应用的技术处于什么水平呢?
通过大数据和人工智能等技术实现自然语言问诊,问诊答复的精准率超过了70%,据我了解我们是业内第一家做到这个准确率的。我们机器人会确认用户意图,当意图不明确时她会揣摩和追问,以保证答案的是用户需要知道的信息。
百度大数据实验室目前的整体情况是怎样的?
大数据实验室成立于去年4月,关注大规模机器学习算法和应用、大数据预测分析和垂直行业应用探索、带结构大数据的算法研究、智能系统的研究等方向。实验室分为北京和美国硅谷两个分部。实验室采用承诺承包制,你选择的项目你负责。我负责关键架构,关键技术攻关和方向性的问题,路不能走错。我们的大规模机器学习算法、深度学习技术、人机对话技术在业界都处于领先水平。
方兴未艾
国内大数据产业方兴未艾,国务院不久前也印发了《大数据发展行动纲要》。你如何看国内大数据产业的发展?
从创业者角度讲,你要了解用户需求,解决用户的痛点,才能能带动产业、解决就业,还能把很多技术出口到国外去。我们实验室的大规模机器学习算法、搜索技术、图像识别、深度学习等都是世界级水平的。
美国在很多方面迭代比较慢,因为它是已经发展的比较成熟了,欧洲公司也比较慢。但我觉得百度迭代非常非常快。现在很多新概念都是在中国、在以色列等地区出现的。这是思维比较活跃的国家。
国内大数据产业很火,有些是真的,有些是忽悠。要看大数据技术应用之后能否实现对现有模式的改变,能改变多少,这些改变是否有帮助。
你理想中未来的数据生活是怎样的?
手机真正成为你的生活秘书。比如今天我加班晚了,通过定位信息等和手环的健康信息检测,手机能知道我没吃饭,会主动推送说,“要不要点个外卖?”我去葡萄牙出差,手机知道我平时喜欢跑步,会推送给我当地最适合跑步的地方。这种智能化服务会让用户觉得生活质量都提高了。你能专注于你喜欢的事情,这是我期待看到的。
你描述的场景应该如何去努力实现呢?
定位信息、健康数据检测、地图位置信息等,这些在技术上都不难。但这些靠一家公司无法完成,需要多个企业、部门进行合作,打破一些壁垒,包括政策性的壁垒和行业间的壁垒,这样1+1的效果就大于2。我希望我们的技术不仅仅是服务于某家公司,而是服务360行,带动整个社会进步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01