京公网安备 11010802034615号
经营许可证编号:京B2-20210330
百度大数据实验室范伟:如何打造大数据生态圈
在日前举行的百度世界大会上,百度喊出了近来互联网界颇为流行的“生态”口号。百度的“生态”与视频、手机、电视没有关系,它要建立的是连接3600行的大数据生态圈。
“百度是天然的大数据公司,覆盖全网6亿网民,每天响应60亿次搜索请求,150亿次定位请求。”百度大数据实验室副主任范伟表示。然而,然而如何在海量信息中准确甄别信息、计算相关信息、快速反馈信息,仍是技术研发人员面临的严峻考验。
大数据问诊
百度日前发布了慧医疗、慧城市、慧创业三款应用。能否以“慧医疗”为例,为我们介绍下,百度采用了哪些技术?大数据又是如何应用的呢?
慧医疗其中的一项应用是深度医疗对话机器人,通过语音输入或在应用界面输入文字,用户可以和机器人进行对话。你输入自己的疾病症状,她可以对你的疾病进行分析,并根据你的需求提供建议或帮助。重要的是,当用户意图和信息不明确时,深度对话机器人会智能的揣摩用户意图,引导用户。在充分理解,用户需求后,提供用户需要的信息。
机器人对用户问题的回答都是以大数据为基础的。网上有两类医疗信息,一类是病人之间的信息共享,一类是医生之间的信息交流。专业的医疗信息虽然能在网上和医书里获取,但内容十分有限。比如网上关于心脏病、糖尿病的信息很多,但是关于心脏搭桥的信息就很少。这些信息鱼龙混杂,重要的是进行信息甄别,对信息的可信度进行分析。可信度分析也是通过数据计算出来,比如有多少人参考了这个答案,这个人回答过多少问题,他(她)回答问题的所用的词汇分析等等。核实后的信息会整合成一个类似的知识库,每条信息都有个0-1间的可信度。用户提出的问题,都用库里的信息作为基础回答。
提问和回答之间如何做到信息匹配呢?
用户提问的意图也有很多种,我们系统里大概有数十种用户意图的分类,比如说你想知道是什么病,还是想知道吃什么药,自己怎样调养。但是有时候用户提问的意图并不明确,例如“我今天不舒服”。这样我们的系统会和用户进一步揣摩、明确意图,例如问他(她)是想获得治疗信息、疾病知识,还是医生信息,再提供服务。我们的意图模型,利用基于深度学习的建模,精准率达到了90%多。
目前市场上移动医疗的应用程序也很多。慧医疗所应用的技术处于什么水平呢?
通过大数据和人工智能等技术实现自然语言问诊,问诊答复的精准率超过了70%,据我了解我们是业内第一家做到这个准确率的。我们机器人会确认用户意图,当意图不明确时她会揣摩和追问,以保证答案的是用户需要知道的信息。
百度大数据实验室目前的整体情况是怎样的?
大数据实验室成立于去年4月,关注大规模机器学习算法和应用、大数据预测分析和垂直行业应用探索、带结构大数据的算法研究、智能系统的研究等方向。实验室分为北京和美国硅谷两个分部。实验室采用承诺承包制,你选择的项目你负责。我负责关键架构,关键技术攻关和方向性的问题,路不能走错。我们的大规模机器学习算法、深度学习技术、人机对话技术在业界都处于领先水平。
方兴未艾
国内大数据产业方兴未艾,国务院不久前也印发了《大数据发展行动纲要》。你如何看国内大数据产业的发展?
从创业者角度讲,你要了解用户需求,解决用户的痛点,才能能带动产业、解决就业,还能把很多技术出口到国外去。我们实验室的大规模机器学习算法、搜索技术、图像识别、深度学习等都是世界级水平的。
美国在很多方面迭代比较慢,因为它是已经发展的比较成熟了,欧洲公司也比较慢。但我觉得百度迭代非常非常快。现在很多新概念都是在中国、在以色列等地区出现的。这是思维比较活跃的国家。
国内大数据产业很火,有些是真的,有些是忽悠。要看大数据技术应用之后能否实现对现有模式的改变,能改变多少,这些改变是否有帮助。
你理想中未来的数据生活是怎样的?
手机真正成为你的生活秘书。比如今天我加班晚了,通过定位信息等和手环的健康信息检测,手机能知道我没吃饭,会主动推送说,“要不要点个外卖?”我去葡萄牙出差,手机知道我平时喜欢跑步,会推送给我当地最适合跑步的地方。这种智能化服务会让用户觉得生活质量都提高了。你能专注于你喜欢的事情,这是我期待看到的。
你描述的场景应该如何去努力实现呢?
定位信息、健康数据检测、地图位置信息等,这些在技术上都不难。但这些靠一家公司无法完成,需要多个企业、部门进行合作,打破一些壁垒,包括政策性的壁垒和行业间的壁垒,这样1+1的效果就大于2。我希望我们的技术不仅仅是服务于某家公司,而是服务360行,带动整个社会进步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27