京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据和分析带来五大积极业务成果
当今企业可以收集客户在互联网使用过程中的各种数据。这些信息可能包括移动应用使用情况、网络点击、社交媒体互动等,所有这些数据构成了其所有者独特的数据使用轨迹。然而,就在不久之前,客户分享诸如什么时候醒来,早餐吃什么,去哪里度假等信息的想法至少还是一件令人奇怪的事情。
客户的社交规则确实有所改变,其结果是期望也在升级。本文将概述企业可以从数据和分析中获得的五大好处,这包括为企业自身的业务和客户带来积极成果,同时维持和推进最高级别的数据保护。
1.积极主动&预测需求
企业机构面临着越来越大的竞争压力,它们不仅需要获取客户,还要了解客户的需求,以便提升客户体验,并发展长久的关系。客户通过分享数据,降低数据使用的隐私级别,期望企业能够了解他们,形成相应的互动,并在所有的接触点提供无缝体验。 为此,企业需要识别客户的多个标识符(例如手机、电子邮件和地址),并将其整合为一个单独的客户ID。由于客户越来越多地使用多个渠道与企业互动,为此需要整合传统数据源和数字数据源来理解客户的行为。此外,企业也需要提供情境相关的实时体验,这也是客户的期望。
2. 缓冲风险&减少欺诈
安全和欺诈分析旨在保护所有物理、财务和知识资产免受内部和外部威胁的滥用。高效的数据和分析能力将确保最佳的欺诈预防水平,提升整个企业机构的安全:威慑需要建立有效的机制,以便企业快速检测并预测欺诈活动,同时识别和跟踪肇事者。 将统计、网络、路径和大数据方法论用于带来警报的预测性欺诈倾向模型,将确保在被实时威胁检测流程触发后能够及时做出响应,并自动发出警报和做出相应的处理。数据管理以及高效和透明的欺诈事件报告机制将有助于改进欺诈风险管理流程。 此外,对整个企业的数据进行集成和关联可以提供统一的跨不同业务线、产品和交易的欺诈视图。多类型分析和数据基础可以提供更准确的欺诈趋势分析和预测,并预测未来的潜在操作方式,确定欺诈审计和调查中的漏洞。
3.提供相关产品
产品是任何企业机构生存的基石,也通常是企业投入最大的领域。产品管理团队的作用是辨识推动创新、新功能和服务战略路线图的发展趋势。 通过对个人公布的想法和观点的第三方数据源进行有效整理,再进行相应分析,可以帮助企业在需求发生变化或开发新技术的时候保持竞争力,并能够加快对市场需求的预测,在需求产生之前提供相应产品。
4. 个性化&服务
公司在处理结构化数据方面仍然有些吃力,并需要快速应对通过数字技术进行客户交互所带来的不稳定性。要做出实时回应,并让客户感觉受到重视,只能通过先进的分析技术实现。大数据带来了基于客户个性进行互动的机会。这是通过理解客户的态度,并考虑实时位置等因素,从而在多渠道的服务环境中带来个性化关注实现的。
5. 优化&改善客户体验
运营管理不善可能会导致无数重大的问题,这包括面临损害客户体验,最终降低品牌忠诚度的重大风险。通过在流程设计和控制,以及在商品或服务生产中的业务运营优化中应用分析技术,可以提升满足客户期望的有效性和效率,并实现卓越的运营。 通过部署先进的分析技术,可以提高现场运营活动的生产力和效率,并能够根据业务和客户需求优化组织人力安排。数据和分析的最佳化使用可以带来端对端的视图,并能够对关键运营指标进行衡量,从而确保持续不断的改进。 例如,对于许多企业来说,库存是当前资产类别中最大的一个项目——库存过多或不足都会直接影响公司的直接成本和盈利能力。通过数据和分析,能够以最低的成本确保不间断的生产、销售和/或客户服务水平,从而改善库存管理水平。数据和分析能够提供目前和计划中的库存情况的信息,以及有关库存高度、组成和位置的信息,并能够帮助确定存库战略,并做出相应决策。客户期待获得相关的无缝体验,并让企业得知他们的活动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22