
SQL Server 批量插入数据的两种方法
在SQL Server 中插入一条数据使用Insert语句,但是如果想要批量插入一堆数据的话,循环使用Insert不仅效率低,而且会导致SQL一系统性能问题。下面介绍SQL Server支持的两种批量数据插入方法:Bulk和表值参数(Table-Valued Parameters)。
运行下面的脚本,建立测试数据库和表值参数。
[c-sharp] view plaincopy
--Create DataBase
create database BulkTestDB;
go
use BulkTestDB;
go
--Create Table
Create table BulkTestTable(
Id int primary key,
UserName nvarchar(32),
Pwd varchar(16))
go
--Create Table Valued
CREATE TYPE BulkUdt AS TABLE
(Id int,
UserName nvarchar(32),
Pwd varchar(16))
下面我们使用最简单的Insert语句来插入100万条数据,代码如下:
[c-sharp] view plaincopy
Stopwatch sw = new Stopwatch();
SqlConnection sqlConn = new SqlConnection(
ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);//连接数据库
SqlCommand sqlComm = new SqlCommand();
sqlComm.CommandText = string.Format("insert into BulkTestTable(Id,UserName,Pwd)values(@p0,@p1,@p2)");//参数化SQL
sqlComm.Parameters.Add("@p0", SqlDbType.Int);
sqlComm.Parameters.Add("@p1", SqlDbType.NVarChar);
sqlComm.Parameters.Add("@p2", SqlDbType.VarChar);
sqlComm.CommandType = CommandType.Text;
sqlComm.Connection = sqlConn;
sqlConn.Open();
try
{
//循环插入100万条数据,每次插入10万条,插入10次。
for (int multiply = 0; multiply < 10; multiply++)
{
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
sqlComm.Parameters["@p0"].Value = count;
sqlComm.Parameters["@p1"].Value = string.Format("User-{0}", count * multiply);
sqlComm.Parameters["@p2"].Value = string.Format("Pwd-{0}", count * multiply);
sw.Start();
sqlComm.ExecuteNonQuery();
sw.Stop();
}
//每插入10万条数据后,显示此次插入所用时间
Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
}
}
catch (Exception ex)
{
throw ex;
}
finally
{
sqlConn.Close();
}
Console.ReadLine();
耗时图如下:
由于运行过慢,才插入10万条就耗时72390 milliseconds,所以我就手动强行停止了。
下面看一下使用Bulk插入的情况:
bulk方法主要思想是通过在客户端把数据都缓存在Table中,然后利用SqlBulkCopy一次性把Table中的数据插入到数据库
代码如下:
[c-sharp] view plaincopy
public static void BulkToDB(DataTable dt)
{
SqlConnection sqlConn = new SqlConnection(
ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);
SqlBulkCopy bulkCopy = new SqlBulkCopy(sqlConn);
bulkCopy.DestinationTableName = "BulkTestTable";
bulkCopy.BatchSize = dt.Rows.Count;
try
{
sqlConn.Open();
if (dt != null && dt.Rows.Count != 0)
bulkCopy.WriteToServer(dt);
}
catch (Exception ex)
{
throw ex;
}
finally
{
sqlConn.Close();
if (bulkCopy != null)
bulkCopy.Close();
}
}
public static DataTable GetTableSchema()
{
DataTable dt = new DataTable();
dt.Columns.AddRange(new DataColumn[]{
new DataColumn("Id",typeof(int)),
new DataColumn("UserName",typeof(string)),
new DataColumn("Pwd",typeof(string))});
return dt;
}
static void Main(string[] args)
{
Stopwatch sw = new Stopwatch();
for (int multiply = 0; multiply < 10; multiply++)
{
DataTable dt = Bulk.GetTableSchema();
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
DataRow r = dt.NewRow();
r[0] = count;
r[1] = string.Format("User-{0}", count * multiply);
r[2] = string.Format("Pwd-{0}", count * multiply);
dt.Rows.Add(r);
}
sw.Start();
Bulk.BulkToDB(dt);
sw.Stop();
Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
}
Console.ReadLine();
}
耗时图如下:
使用Bulk插入100万数据的耗时图
可见,使用Bulk后,效率和性能明显上升。使用Insert插入10万数据耗时72390,而现在使用Bulk插入100万数据才耗时17583。
最后再看看使用表值参数的效率,会另你大为惊讶的。
表值参数是SQL Server 2008新特性,简称TVPs。对于表值参数不熟悉的朋友,可以参考最新的book online,我也会另外写一篇关于表值参数的博客,不过此次不对表值参数的概念做过多的介绍。言归正传,看代码:
[c-sharp] view plaincopy
public static void TableValuedToDB(DataTable dt)
{
SqlConnection sqlConn = new SqlConnection(
ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);
const string TSqlStatement =
"insert into BulkTestTable (Id,UserName,Pwd)" +
" SELECT nc.Id, nc.UserName,nc.Pwd" +
" FROM @NewBulkTestTvp AS nc";
SqlCommand cmd = new SqlCommand(TSqlStatement, sqlConn);
SqlParameter catParam = cmd.Parameters.AddWithValue("@NewBulkTestTvp", dt);
catParam.SqlDbType = SqlDbType.Structured;
//表值参数的名字叫BulkUdt,在上面的建立测试环境的SQL中有。
catParam.TypeName = "dbo.BulkUdt";
try
{
sqlConn.Open();
if (dt != null && dt.Rows.Count != 0)
{
cmd.ExecuteNonQuery();
}
}
catch (Exception ex)
{
throw ex;
}
finally
{
sqlConn.Close();
}
}
public static DataTable GetTableSchema()
{
DataTable dt = new DataTable();
dt.Columns.AddRange(new DataColumn[]{
new DataColumn("Id",typeof(int)),
new DataColumn("UserName",typeof(string)),
new DataColumn("Pwd",typeof(string))});
return dt;
}
static void Main(string[] args)
{
Stopwatch sw = new Stopwatch();
for (int multiply = 0; multiply < 10; multiply++)
{
DataTable dt = TableValued.GetTableSchema();
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
DataRow r = dt.NewRow();
r[0] = count;
r[1] = string.Format("User-{0}", count * multiply);
r[2] = string.Format("Pwd-{0}", count * multiply);
dt.Rows.Add(r);
}
sw.Start();
TableValued.TableValuedToDB(dt);
sw.Stop();
Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
}
Console.ReadLine();
}
耗时图如下:
使用表值参数插入100万数据的耗时图
比Bulk还快5秒。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18