京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在医疗领域的应用
医疗大数据的发展会给医疗行业带来哪些变化呢?
让医疗诊断和结果的描述更加精准,更加客观
让医疗效果的展现更加直观,更加能说服于人,如果从此方面对医生的业绩进行考核,则会更客观可信
让疾病的预测更准确,更科学
让真正的个性化医疗成为可能
让医疗中的决策更快速,更高效
让医疗事故等责任划分方面更加明确
大数据
大数据定义很多,我个人选取了以下两种(如有错误,欢迎留言指出交流)
动词定义:当今社会所独有的一种新型能力,一种前所未有的方式,通过对海量数据进行分析,获得巨大价值的产品、服务和见解;
名次定义:基于多源异构、跨域关联的海量数据(数据量、数据形态、数据分析处理方式),通过分析所产生的决策流程、商业模式、科学范式、生活方式和观念形态上的颠覆性变化的总和。
医疗数据
医生对患者诊疗和治疗过程中产生的数据,包括患者的基本数据、电子病历、诊疗数据、医学影像数据、医学管理、经济数据、医疗设备和仪器数据等,以患者为中心,成为医疗数据的主要来源。
医疗数据来源
医疗数据主要来源于4个方面:患者就医、临床研究和科研、生命制药、可穿戴设备等。
患者就医过程产生的数据:以患者为中心,所有数据均来源于患者,患者的体征数据、患者的化验数据、患者的描述,患者的住院数据、医生对患者的问诊数据、医生对患者的临床诊治、用药、手术等数据。
临床医疗研究和实验室数据:主要是实验中产生的数据,也包含患者产生的数据,没有严格的边界区分。
制药企业和生命科学产生的数据:同样主要是实验产生的数据,与用药相关的用药量,用药时间,用药成分,实验对象反应时间,症状改善表象等数据,与生命等基因组学相关的数据。
可穿戴设备部带来的健康数据:主要通过各种穿戴设备(手环、起搏器、眼镜等)收集的人体的各种体征数据。
医疗数据特性
医疗数据首先它属于数据的一种,所以其大数据也必定具备一般的数据特性:规模大、结构多样、增长快速、价值巨大,但是其作为医疗领域产生的数据也同样具备医疗性:多态性、不完整性、冗余性、时间性、隐私性
多态性:医疗 数据包含有像化验产生的纯数据,也会有像体检产生的图像数据类似心电图等信号图谱,医生对患者的症状描述以及跟进自己经验或者数据结果做出的判断等文字描述,另外还有像心跳声,哭声,咳嗽声等类似的声音资料,同时现代医院的数据中还有各种动画数据(像胎动的影像等)
不完整性:由于各种原因导致有很多医学数据是不完整的,像医生的主观判断以及文字描述的不完整,患者治疗中断导致的数据不完整,患者描述不清导致的数据不完整等
冗余性:医疗数据量巨大,每天会产生大量多余的数据,这给数据分析的筛选带来了很大困难
时间性:大多医疗数据都是具有时间性、持续性的,像心电图,胎动思维图均属于时间维度内的数据变化图谱
隐私性:另外隐私性也是医疗数据的一个重要特性,同时也是现在大部分医疗数据不愿对外开放的一个原因,很多医院的临床数据系统都是相对独立的局域网络,甚至不会去对外联网。
数据的处理
数据的处理一般分为6个步骤:挖掘数据、收集数据、分析数据、存储数据、数据转化实用,最终在实用过程中产生数据,如此循环。
在数据处理的每个环节中均可找到不小的市场。
在挖掘医疗数据方面,涉及到医院、医联体等医疗机构,现在这些机构越来越重视医疗数据,虽然这些机构可能并没有找到比较好的处理和分析这些数据的方法;
收集医疗数据,虽然大量医疗数据的收集依旧在医院等医疗机构,但是其中可穿戴设备厂商俨然一股不可小觑的势力,并且收集的数据形式、数量、种类也越来越多样化,这对医疗大数据的组成也是必不可少的一部分;
分析医疗数据,现在市场上已经有不少涉及医疗数据分析 业务的企业,像碳云智能,23魔方等企业(后面会讲到);
存储数据,由于大数据本身具备的规模大,机构多样、增长快速等特性决定医疗数据必然也会涉及到存储的问题,目前互联网巨头BAT,以及IBM等大型企业也均在构建自己的医疗大数据库;
医疗大数据的实用,目前市面上的移动医疗 公司均打着大数据个性化定制等口号,像春雨医生智能问诊、掌上糖医、IBM沃森精准医疗,23墨方基因预测等,但是做到医疗大数据的实用,首先需找到一个有效的分析手段以及具备有大数据级别的医疗数据来源。
医疗大数据的用途
医疗大数据的主要用途有:用药分析、病因分析、移动医疗、基因组学、疾病预防、可穿戴医疗等。随着医疗大数据的发展和分析方法、人工智能等技术的不断革新,能够准确利用医疗大数据来进行分析和预测的场景会越来越多,到时大数据终将会成为医疗决策的一种重要辅助依据,决策的路径也会跟随着变化:从之前的“经验即决策”,到现在的“数据辅助决策”,至将来的“数据即决策”数据即决策。
医疗大数据企业
医疗大数据企业主要分为三类:慢病及健康管理(辅助患者)、临床决策支持(辅助医生)、医药研发;
医疗大数据的服务对象主要有:居民、医生、科研、管理机构、公众健康。
其中根据收集到的信息主要介绍以下三家企业:
碳云智能:将基于全球专业度最高、指数增长的全息全程健康医疗大数据,通过顶尖的数据挖掘和机器分析技术,提供私人专享的健康指数分析和预测。面对的客户群体包括:研究机构,药厂,体检中心,医院,诊断公司,保险公司,健康管理公司等。
雅森科技:作为国内最早一家从核医学领域切入的CAD公司,目前也是医学影像人工智能分析大军中的一员,专注于采用各类数学算法进行医疗图像处理、机器训练、大数据库比对、标准生物物理影像模型的开发与应用,将海量数据可以转化为高效的诊断能力。
太美医疗致力于信息技术在医疗领域的应用,为医疗行业提供SaaS解决方案。产品和服务涵盖临床研究和药物警戒等领域。
医疗大数据方向
社会化医学:以医疗大数据为基础引起政务、教育、商业等各个领域的变革。如“国民健康生活引导”的发布,“广播体操”的不断更新。
个性化医学:以大数据为基础为患者量身设计出最佳方案,以期达到治疗效果最大化和副作用最小化的定制医疗模式。
目前国家重点企业牵头 已经组建了三家健康大数据企业:中国健康医疗大数据产业发展集团公司、中国健康医疗大数据科技发展集团公司、中国健康医疗大数据股份有限公司。目标非常明确:
通过健康医疗大数据应用促进优质医疗资源下沉到基层群众,努力提高人民群众获得感;
通过健康医疗大数据支持三医联动、分级诊疗、异地结算和远程服务等,为深化医改注入新动力;
通过健康医疗大数据应用发展,创新健康服务新业态,发展健康科技产品,推进覆盖一二三产业的全健康产业链的发展,促进数字经济为国民经济增添新动能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16