
Python判断两个对象相等的原理
大部分的python程序员平时编程的时候,很少关心两个对象为什么相等,因为教程和经验来说,他们就应该相等,比如1==1就应该返回True,可是当我们想要定义自己的对象或者修改默认的对象行为时,通常会因为不了解原理而导致各种奇奇怪怪的错误。
两个对象如何相等
两个对象如何才能相等要比我们想象的复杂很多,但核心的方法是重写 eq 方法,这个方法返回True,则表示两个对象相等,否则,就不相等。相反的,如果两个对象不相等,则重写 ne 方法。 默认情况下,如果你没有实现这个方法,则使用父类(object)的方法。父类的方法比较是的两个对象的ID(可以通过id方法获取对象ID),也就是说,如果对象的ID相等,则两个对象也就相等。因此,我们可以得知,默认情况下,对象只和自己相等。例如:
>>> class A(object):
... pass
...
>>>
>>> a = A()
>>> b = A()
>>> a == a
True
>>> a == b
False
>>> id(a)
4343310992
>>> id(b)
4343310928
Python2程序员经常犯的一个错误是,只重写了 eq 方法,而没有重写 ne 方法,导致不可预计的错误。而Python3会自动重写 ne 方法,如果你没有重写的话。
对象的Hash方法
Python里可Hash的对象,都有一个数字ID代表了它在python里的值,这个ID是由对象的 hash 方法返回的。因此,如果想让一个对象可Hash,那必须实现 hash 方法和之前提到的 eq 方法。和对象相等一样,默认情况下,对象的 hash 方法继承自Object对象,而Object对象的 hash 方法只计算对象ID,因此两个对象始终拥有两个不一样的hash id,不管他们是多么相似。 当我们把一个不可Hash的对象加入到set或者dict时,会发生什么了?
>>> set().add({})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'dict'
unhashable type: 'dict'
原因是set()和dict()使用对象的hash值作为内部索引,以便能快速索引到指定对象。因此,同一个对象返回相同的hash id就很重要了。
对象的Hash值在它的生命周期内不能改变
如果你想定义一个比较完美的对象,并且实现了 eq 和 hash 方法来定义对象的比较行为和hash值,那么你就需要保证对象的相关属性不能发生更改。不然会导致很诡异的错误,比如下面的例子。
>>> class C:
... def __init__(self, x):
... self.x = x
... def __repr__(self):
... return "C({"+str(self.x)+"})"
... def __hash__(self):
... return hash(self.x)
... def __eq__(self, other):
... return (
... self.__class__ == other.__class__ and
... self.x == other.x
... )
>>> d = dict()
>>> s = set()
>>> c = C(1)
>>> d[c] = 42
>>> s.add(c)
>>> d, s
({C(1): 42}, {C(1)})
>>> c in s and c in d # c is in both!
True
>>> c.x = 2
>>> c in s or c in d # c is in neither!?
False
>>> d, s
({C(2): 42}, {C(2)}) # but...it's right there!
在我们没有修改对象的属性时(c.x=2)之前,所有行为都符合预期。当我们通过c.x=2时修改属性后,执行c in s or c in d返回False,但是内容却是修改后的,是不是很奇怪。这也就解释了为什么str、tuple是可Hash的,而list和dict是不可hash的。
因此我们可以得出结论,如果两个对象相等的话,那它们的hash值必然也是相等的。
总结
讲了这么多有什么用了。 1. 当我们遇到unhashable type这个异常时,我们能够知道为什么报这个错误。 2. 如果定义了一个可比较的对象,那么最好保证对象hash值相关的属性在生命周期内不能发生改变,不然会发生意想不到的错误。
以上所述是小编给大家介绍的Python判断两个对象相等的原理,希望对大家有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01