京公网安备 11010802034615号
经营许可证编号:京B2-20210330
推动实施国家大数据战略
中共中央政治局12月8日下午就实施国家大数据战略进行第二次集体学习。中共中央总书记习近平在主持学习时强调,大数据发展日新月异我们应该审时度势、精心谋划、超前布局、力争主动,深入了解大数据发展现状和趋势及其对经济社会发展的影响,分析我国大数据发展取得的成绩和存在的问题,推动实施国家大数据战略,加快完善数字基础设施,推进数据资源整合和开放共享,保障数据安全,加快建设数字中国,更好服务我国经济社会发展和人民生活改善。
北京理工大学副校长、中国科学院院士梅宏就这个问题作了讲解,并谈了意见和建议。
中共中央政治局各位同志认真听取了讲解,并进行了讨论。
培育造就一批大数据领军企业
习近平在主持学习时发表了讲话。他指出,大数据是信息化发展的新阶段。随着信息技术和人类生产生活交汇融合,互联网快速普及,全球数据呈现爆发增长、海量集聚的特点,对经济发展、社会治理、国家管理、人民生活都产生了重大影响。世界各国都把推进经济数字化作为实现创新发展的重要动能,在前沿技术研发、数据开放共享、隐私安全保护、人才培养等方面做了前瞻性布局。
习近平强调,要推动大数据技术产业创新发展。我国网络购物、移动支付、共享经济等数字经济新业态新模式蓬勃发展,走在了世界前列。我们要瞄准世界科技前沿,集中优势资源突破大数据核心技术,加快构建自主可控的大数据产业链、价值链和生态系统。要加快构建高速、移动、安全、泛在的新一代信息基础设施,统筹规划政务数据资源和社会数据资源,完善基础信息资源和重要领域信息资源建设,形成万物互联、人机交互、天地一体的网络空间。要发挥我国制度优势和市场优势,面向国家重大需求,面向国民经济发展主战场,全面实施促进大数据发展行动,完善大数据发展政策环境。要坚持数据开放、市场主导,以数据为纽带促进产学研深度融合,形成数据驱动型创新体系和发展模式,培育造就一批大数据领军企业,打造多层次、多类型的大数据人才队伍。
加快形成以创新为主要引领和支撑的数字经济
习近平指出,要构建以数据为关键要素的数字经济。建设现代化经济体系离不开大数据发展和应用。我们要坚持以供给侧结构性改革为主线,加快发展数字经济,推动实体经济和数字经济融合发展,推动互联网、大数据、人工智能同实体经济深度融合,继续做好信息化和工业化深度融合这篇大文章,推动制造业加速向数字化、网络化、智能化发展。要深入实施工业互联网创新发展战略,系统推进工业互联网基础设施和数据资源管理体系建设,发挥数据的基础资源作用和创新引擎作用,加快形成以创新为主要引领和支撑的数字经济。
习近平强调,要运用大数据提升国家治理现代化水平。要建立健全大数据辅助科学决策和社会治理的机制,推进政府管理和社会治理模式创新,实现政府决策科学化、社会治理精准化、公共服务高效化。要以推行电子政务、建设智慧城市等为抓手,以数据集中和共享为途径,推动技术融合、业务融合、数据融合,打通信息壁垒,形成覆盖全国、统筹利用、统一接入的数据共享大平台,构建全国信息资源共享体系,实现跨层级、跨地域、跨系统、跨部门、跨业务的协同管理和服务。要充分利用大数据平台,综合分析风险因素,提高对风险因素的感知、预测、防范能力。要加强政企合作、多方参与,加快公共服务领域数据集中和共享,推进同企业积累的社会数据进行平台对接,形成社会治理强大合力。要加强互联网内容建设,建立网络综合治理体系,营造清朗的网络空间。
加强精准扶贫、生态环境领域大数据运用
习近平指出,要运用大数据促进保障和改善民生。大数据在保障和改善民生方面大有作为。要坚持以人民为中心的发展思想,推进“互联网+教育”、“互联网+医疗”、“互联网+文化”等,让百姓少跑腿、数据多跑路,不断提升公共服务均等化、普惠化、便捷化水平。要坚持问题导向,抓住民生领域的突出矛盾和问题,强化民生服务,弥补民生短板,推进教育、就业、社保、医药卫生、住房、交通等领域大数据普及应用,深度开发各类便民应用。要加强精准扶贫、生态环境领域的大数据运用,为打赢脱贫攻坚战助力,为加快改善生态环境助力。
习近平强调,要切实保障国家数据安全。要加强关键信息基础设施安全保护,强化国家关键数据资源保护能力,增强数据安全预警和溯源能力。要加强政策、监管、法律的统筹协调,加快法规制度建设。要制定数据资源确权、开放、流通、交易相关制度,完善数据产权保护制度。要加大对技术专利、数字版权、数字内容产品及个人隐私等的保护力度,维护广大人民群众利益、社会稳定、国家安全。要加强国际数据治理政策储备和治理规则研究,提出中国方案。
习近平指出,善于获取数据、分析数据、运用数据,是领导干部做好工作的基本功。各级领导干部要加强学习,懂得大数据,用好大数据,增强利用数据推进各项工作的本领,不断提高对大数据发展规律的把握能力,使大数据在各项工作中发挥更大作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14