京公网安备 11010802034615号
经营许可证编号:京B2-20210330
金融业步入大数据时代 金融大数据发展势头强劲
经过多年的发展与积累,金融领域已具备海量数据,正在步入大数据时代的初级阶段,因此金融大数据正受到银行、保险、证券企业的追捧。随着大数据技术的完善,大数据在金融领域发挥的作用将越来越大,在应用广度和深度上还有很大的进步空间,金融大数据发展势头强劲。
大数据助力金融业转型升级
金融行业在“十三五”时期面临发展方式转型的挑战,转型主要集中在三大方面,即向严监管转型、向管理信息化转变、向“客户为中心”转型。大数据在加强风险管控、精细化管理、服务创新等转型中别具现实意义,是实现向信息化银行转型的重要推动力。
中国金融业在“十三五”时期的转型

具体而言,首先,大数据能够加强风险的可审性和管理力度。其次,大数据能够支持精细化管理。当前中国银行业利率市场化改革已经起步,利率市场化必然会对银行业提出精细化管理的新要求。再次,大数据支持服务创新,能够更好地实现“以客户为中心”理念,通过对客户消费行为模式进行分析,提高客户转化率,开发出不同的产品以满足不同客户的市场需求,实现差异化竞争。
比如,银行业的客户市场细分化程度日趋提高,对数据的集中管理、应用、安全的需求更加迫切。保险企业则大力向电子商务模式转变,而证券公司间的竞争则早已突破地域限制,网上证券交易发展迅猛。数据的挖掘整理,以及有效分析对于提升客户服务水平的价值日趋凸显。
在这种情况下,现有的IT基础设施已经不能满足金融行业快速增长的业务需求,建立开放、强健、安全、高效的金融IT基础设施平台,同时建立更为高效灵活且便捷易用的金融服务体系,加大IT投入的工作已经迫在眉睫。
金融大数据前景分析
金融领域具备海量数据,非常适合与大数据技术相结合,因此金融大数据正受到银行、保险、证券企业的追捧。通过互联网、云计算等信息技术来处理海量数据,从而更好地了解客户、创新服务。
随着数据价值被越来越多的认可,尤其是在金融企业业务转型时期,基于数据的业务及内部管理优化使得金融领域的大数据应用市场规模在未来几年将以高于整体水平的速度增长。
首先,来看近年金融行业大数据应用规模。金融行业是所有行业大数据应用最全面、最成熟的行业,因此,其在整个大数据行业的占比也一直较高。据推算2015年,中国金融行业大数据应用规模年均增长率达到97.0%,超过23亿元。据不完全统计,2016年应用规模将达到44.29亿元。
2013-2016年中国金融行业大数据应用规模及预测(单位:亿元,%)

目前,金融行业主要如信用卡、防欺诈、电子支付业务等,对大数据有比较大的需求。因此,随着金融行业大数据应用的加强已经深入,预计到2017-2022年,金融行业大数据应用市场规模年均复合增长率为55.21%,到2022年,中国金融行业大数据应用市场规模为497亿元。
2017-2022年中国金融行业大数据应用市场规模(单位:亿元,%)

不过,金融大数据还面临着不少阻碍,如内部各业务间存在信息孤岛现象、外部大数据整合难度大等。相信在大数据起到更大效果时,金融大数据的推进不会太大问题,未来前景广阔。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01