京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈python中的实例方法、类方法和静态方法
在学习python代码时,看到有的类的方法中第一参数是cls,有的是self,经过了解得知,python并没有对类中方法的第一个参数名字做限制,可以是self,也可以是cls,不过根据人们的惯用用法,self一般是在实例方法中使用,而cls则一般在类方法中使用,在静态方法中则不需要使用一个默认参数。在下面的代码中,InstanceMethod类的方法中,第一个参数是默认的self,在这里可以把self换成任何名字来表示,不会有任何影响。在类调用的时候,需要满足参数的个数要求(参数中含有*args是例外),例如13行中,类调用没有参数的时候,会提示错误。同样,实例方法的参数个数也应该满足要求,例如16行中也会报错。实例方法的一个主要特点就是需要绑定到一个对象上,python解析器会自动把实例自身传递给方法,如14行所示,而直接使用InstanceMethod.f1()调用方法是不行的。
class InstanceMethod(object):
def __init__(self, a):
self.a = a
def f1(self):
print 'This is {0}.'.format(self)
def f2(self, a):
print 'Value:{0}'.format(a)
if __name__ == '__main__':
# im = InstanceMethod()
im = InstanceMethod('233')
im.f1()
# im.f2()
im.f2(233)
静态方法和类方法都需要使用修饰器,分别使用的是staticmethod和classmethod。静态方法是和类没有关系的,我觉得就是包装在类中的一般方法,如下例子中,调用静态方法使用实例和不使用实例都是可以的。类方法中,默认的第一个参数使用的是cls,类方法也可以不需要实例而直接使用类调用。对于这三种不同的方法,使用方法如下例所示。那么问题来了,既然有了实例方法,类方法和静态方法与之相比又有什么好处呢?
在类方法中,不管是使用实例还是类调用方法,都会把类作为第一个参数传递进来,这个参数就是类本身。如果继承了这个使用类方法的类,该类的所有子类都会拥有了这个方法,并且这个方法会自动指向子类本身,这个特性在工厂函数中是非常有用的。静态方法是和类与实例都没有关系的,完全可以使用一般方法代替,但是使用静态方法可以更好的组织代码,防止代码变大后变得比较混乱。类方法是可以替代静态方法的。静态方法不能在继承中修改。
class test(object):
def instance_method(self):
print 'This is {0}'.format(self)
@staticmethod
def static_method():
print 'This is static method.'
@classmethod
def class_method(cls):
print 'This is {0}'.format(cls)
if __name__ == '__main__':
a = test()
a.instance_method()
a.static_method()
a.class_method()
print '----------------------------------------'
# test.instance_method()
test.static_method()
test.class_method()
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04