
SPSS对数线性模型:模型选择
1、概念“模型选择对数线性分析”过程分析多阶交叉制表(列联表)。它使用成比例拟合的迭代算法将分层对数线性模型拟合到多维交叉制表。此过程可帮助您找出关联的分类变量。要构建模型,可以使用强制输入和向后去除方法。对于饱和模型,可以请求参数估计值和偏关联检验。饱和模型会为所有单元加上0.5。
2、示例。在研究两种洗涤剂中的一种的用户偏好时,研究人员统计了每组的人数、水的软硬度(软、中等或硬)的各种类别、其中一个品牌的上一次使用以及洗涤温度(冷或热)。他们发现了温度与水的软硬度以及品牌偏好的关系。
3、统计量。频率、残差、参数估计值、标准误、置信区间和偏关联检验。对于定制模型,则为残差图和正态概率图。
4、数据。因子变量是分类的。要分析的所有变量都必须是数值。开始进行模型选择分析前,可以将分类字符串变量重新编码为数值变量。避免指定具有多个水平的多个变量。这样的指定可能导致多个单元具有少量的观察值,卡方值可能没用。
5、相关过程。“模型选择”过程可帮助标识模型中需要的项。然后您就可以使用“一般对数线性分析”或“Logit对数线性分析”继续评估模型。可以使用“自动重新编码”重新编码字符串变量。如果数值变量具有空类别,则使用“重新编码”创建连续的整数值。
二、选项(分析-对数线性模型-模型选择-选项)
1、显示。您可以选择频率和/或残差。在饱和模型中,观察的和期望的频率相同,残差为0。
2、图。对于定制模型,可以选择两种类型的图中的一种或两种:残差和正态概率。这些可帮助确定模型与数据的拟合度。
3、显示饱和模型。对于饱和模型,可以选择参数估计值。参数估计值可帮助确定可从模型中删除哪一项。此外还有一个可用的关联表,其中列出了偏关联检验。对于具有多个因子的表,选择这个选项需要进行大量的计算。
4、模型标准。使用成比例拟合的迭代算法获取参数估计值。通过指定最大迭代次数、收敛或Delta(为饱和模型的所有单元频率添加的值)可覆盖一个或多个估计标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28