
当你学会抄菜的时候,你就学会了大数据
最近在学习数仓跟BI,突然发现,结合自己所学会抄的菜。试着把学过的大数据重新理解一番,希望各位都能来一起讨论,共同进步。
走进厨房
走进厨房后,相信大家会看到各种锅碗瓢盆,案板,切菜刀,调料,橱柜,水池...........而这些就相当于是大数据的架构。
其中橱柜,相当于是Hadoop。橱柜可以储存各种食材,而Hadoop可以存储各种不同类的数据(结构化与非结构化)。而橱柜可以存放不同食材,比如不规整的豆腐块,大冬瓜,土豆....还有一些规整的食材,比如大米,小米,绿豆........规整的食材与不规整的食材的区别,各家有各家不同的规定,而一般的规定就是规格的食材要用袋子把它们装起来。这里就相当于是大数据里的数据整理流程。而这些半规整的食材要放到一个个小袋子里,比如说,淀粉,姜粉,蒜泥.....用袋子或者盒子把它们装好,放在相应橱柜的地方,就相当于我们大数据里说的ETL(抽取,封装,加载),以备后用。
而不同厂家的橱柜又会有不同的格子划分及存储区,比如:欧派,宜家的橱柜就会划分出很多小的分区来装不同的东西。而这一块就相当于HBase,灶台下边有专门用于凉碗的,还有抽油烟机旁边专门用于放刀具的区域,还有专门用于放各种锅的区域。而当HBase划分的好的时候,就对上层的MapReduce有很大的帮助,因为你各个区域规划的越好,当你开始抄菜的时候,取用各种餐具的时候就会更加的得心用手。
至于上边的Mahout,Pig,Hive就相当于你如何在橱柜中找到你相应的食材的过程,比如说,你要抄西红柿鸡蛋,你要找鸡蛋跟西红柿...........再往上走就是一个对厨房的整体管理了。你做过的哪些菜,或者你想按照某个食谱来做菜,你就要有一个本子写上你每次做菜的步骤,这个就相当于是FlumeL,而Sqoop就相当于萝卜擦,你想吃萝卜丝,你就要用工具把萝卜切成丝才可以,这里,用刀具可以,用萝卜擦会更高效。
再来说说Zookeeper吧!它就相当于把你经常用的几项工具放到离你做菜最近的一个橱柜中。方便管理这些工具。
好了,说完了Hadoop,再来说一说Spark.它跟橱柜的唯一不同就是:橱柜是给你全部安装固定好了的,而Spark这种橱柜是可以移动的橱柜,同时对于你经常用的工具,可以进行优先排序。让你更快的对食材进行加工。刚开始,你做完一道菜,要半个小时多,而当你熟练之后,加之Spark移动橱柜+优先推送食材(内存计算+可迭代算法),你可以在5分钟内就做完这道菜。
加工食材
实际上,我们食材的储存过程就相当于是一个数仓的建立过程,而在一个数仓的建立过程中。最重要的莫过于区分不同维度。比如在大数据里的Key+Value,Big list,实际上都是提供一种基于可扩展的列值存储。而在数据可视化中,数据多维分维里,也是强调数据的不同维度的区分。这里我们就以食材的区分为例来说明。
首先,厨房里的食材维度可以大致分析:蔬菜维度,禽肉维度,米面维度............不同的维度决定了你对食物的理解程度,比如:你可以把糯米放在米面维度,也可以放在糕点维度。所以数据的不同维度也取决于你对食材的功能及使用场景。再比如:把你香茹切的很小,晒干,然后碾成粉,要这些香茹粉就会从蔬菜维度进入到调料维度。
当我们明白了食材维度的这个概念之后,我们就要开始我们的加工了。是先抄,还是先炸,还是先热水汤一下,都是对食材的一种加工。这里就相当于对初始数据进行相应的整形。由于要用到不同的厨具,就涉及到前边讲的走进厨房的细节的。在大数据里,可以用不同的组件对原始数据进行处理。而在厨房,可以用不同的厨具对食材进行处理。比如:蒸馒头,可以用抄锅来蒸,同时可以用钢精锅来蒸。虽然都能达到能吃的地步。但是所用的时间及口感不同。这些也就相当于大数据里各种不同组件之间的动行效果。
最后,先感谢下我现在的公司,每个月不定期给我们发菜,同时也感谢下老婆,教会了我抄各种菜。最后,附一张我抄好的菜吧(先给它起一个响亮的名字:乱棍打死猪八戒!undefined )!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15