
一直总是听说过这几个词,但是很容易记混,在这里记录一下。希望对大家理解有帮助。
首先来做一个总结:
精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。
召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。
用公式表达如下:
上面还是有点抽象,下面通过例子来解释一下上面说法:
准确率(P值)
假设我此时想吃香蕉,实验室里面每天都会安排10个水果,水果种类分别是6个香蕉,3个橘子,1个菠萝。哎,但是,实验室主任搞事情啊,为了提高我们吃水果的动力与趣味,告诉我们10个水果放在黑盒子中,每个人是看不到自己拿的什么,每次拿5个出来,哎,我去抽了,抽出了2个香蕉,2个橘子,1个菠萝。
下面我们来分别求求P值,R值,F值,哈哈!
按照一开始说的,精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。
这里我们的正样本就是我想吃的香蕉!
在预测结果中,有2个香蕉,总个数是我拿的5个,那么P值计算如下:
P = 2/5
召回率(R值)
按照开始总结所说。
召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。
我们这里的正类是我想吃的香蕉,而在样本中的香蕉个数是6个,召回率的召回也可以这么理解,代表了,原始样本中正类召回了多少。R值计算如下:
R = 2/6
分母已经变成了样本中香蕉的个数啦
F值
可能很多人就会问了,有了召回率和准去率这俩个评价指标后,不就非常好了,为什么要有F值这个评价量的存在呢?
按照高中语文老师所说的,存在即合理的说法,既然F值存在了,那么一定有它存在的必要性,哈哈哈哈!
我们在评价的时候,当然是希望检索结果Precision越高越好,同时Recall也越高越好,但事实上这两者在某些情况下有矛盾的。
比如极端情况下,在我们这个例子中,我们只搜索出了一个结果,且是香蕉,那么Precision就是100%,但是Recall为1/6就很低;而如果我们抽取10个水果,那么比如Recall是100%,但是Precision为6/10,相对来说就会比较低。
因此P和R指标有时候会出现的矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure,通过计算F值来评价一个指标!
我这里给出最常见的F1计算方法,如下:
F1 = (2*P*R)/(P+R)
F那么在我们这个例子中F1 = (2*2/5*2/6)/(2/5+2/6)(这里我就不算出来了,有这个形式,更加能体现公式特点!)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29