京公网安备 11010802034615号
经营许可证编号:京B2-20210330
平安口袋银行获评年度最佳APP 大数据促零售战略转型
10月27日,由易观主办的“易观A10大数据应用峰会”在北京举行。凭借出色的金融创新能力和大数据在银行用户运营的应用,平安口袋银行将易观之星年度评选的“2017年最佳APP”奖项揽入囊中。作为国内一年一度的大数据盛典,易观A10峰会进行的易观之星2017年度评选是国内共识性和专业性于一体的奖项活动。
活动现场,平安银行(000001,股吧)零售网络金融事业部总裁李明作为特邀嘉宾,参与了“用户经营”论坛的演讲。演讲中李明谈道:“在大数据时代的背景下,平安银行致力于将行内系统底层数据全面打通,对客户数据进行全面收集并进行有效整合,对不同的客户制定不同的产品策略、营销策略及服务策略,制定精准经营方案。同时,不断完善内部数据标签体系,每个客户标签最多达到2000个,从而对银行老客户进行精细化运营。通过大数据平台经营覆盖全量客户。截止目前,平安银行新客户的户均资产比去年提升70%,存量零资产和低于1万元的低资产客户1-9月为全行贡献800多亿的新增资产。对标同业,平安银行2017年前三季度关键指标(存款、贷款、AUM)增速在股份制银行中均位列第一。”
平安银行以“大数据基础能力建设”、“AI基础能力建设”、“基础服务能力建设”3大基础建设作为基石,将银行内部各系统的底层数据全面打通,多维度对客户数据进行收集并有效整合,使其得以在客户经营、管理决策、市场获客及风控流程等领域被有效应用。比如本次获得“2017最佳APP”奖的平安口袋银行更是运用“人工智能+大数据”在4.0版本中,推出了平安口袋银行智能投顾,能根据客户的交易记录与风险偏好,为客户提供个性化的产品投资组合方案。同时,口袋APP还能对客户行为的大数据分析,可做到预测每一个客户最可能要使用的下一个功能或产品,并通过APP推送、呈现,实现“千人千面”。让客户能在平安银行口袋银行新版中充分感受到智能化、个性化的酷炫体验。
截至2017年9月末,平安银行零售AUM余额突破万亿,贷款余额7400余亿,存款余额也突破了3000亿元,这样庞大的零售数据若没有大数据报表平台的支持,就无法实时准确有效的获取并加以分析利用。李明表示,平安银行自行开发出多套数据报表,通过报表核心功能,做到经营业绩T+0快速可视化,并通过移动化设备实时传达,让管理者及时了解监控业绩情况,并通过邮件分享及订阅,将有效数据及时传达下发。报表核心功能还包括明细数据下载,让管理者能够有充足数据进行分析,助力决策制定。
此外,平安银行对创新媒体投放模式进行积极探索,深度挖掘行内数据,在内部建立用户标签体系,为客户标记年龄、性别、浏览购买行为、资产、业务类别等标签。之后,进一步通过IdMapping找到平安银行用户在合作媒体上的行为数据,例如浏览行为、兴趣标签等等,细化客户画像。最后,再利用大数据服务公司提供的用户线下行为数据、支付数据等,进一步完精准善客户画像。依托行内行外多方数据,建立数据模型,挖掘潜在客户,同时,加深与媒体方的深度合作,针对目标用户精准投放,再返回转化数据,优化模型。对比传统的媒体投放获客效率提升65%以上。
当下,欺诈风险日益呈现出复杂化、高科技化,李明在现场还介绍了平安银行“人工智能+大数据”构建的企业级的反欺诈体系。李明表示,平安银行通过对“事前、事中、事后”全流程进行反欺诈监控,即在欺诈行为事前、事中、事后各个环节中通过结合黑名单和各类征信资源、常用设备和习惯表、对关联欺诈进行挖掘、欺诈聚类和图案挖掘。利用人脸识别、经纬度定位、设备指纹、声纹识别等AI技术做到链式网络分析甄别欺诈用户。同时,大数据还深入运用到企业级反欺诈的各个模块,打通借记、信用,助力科学决策。据悉,平安银行通过运用这些有效的手段,仅在2016年一年间拦截案件就达到了50000余起,防堵金额近3亿元人民币。并且,截至2017年三季度,平安银行在零售贷款额增长的同时,零售贷款额不良增额、不良率实现“双降”。其中信用卡不良率1.18%,较上年末下降0.25个百分点。
精彩多样的金融科技创新的背后,是平安银行正渐入佳境的“智能化零售转型”。围绕“科技引领、零售突破、对公做精”三大核心策略,平安银行不断着力提升大数据的应用能力,凭借科技力量助推战略转型升级,全力打造以“SAT(社交+移动应用+远程服务)+智能主账户”为核心的零售银行服务体系,并对口袋银行APP进行精耕,运用高科技+大数据,为客户倾力打造“更懂您”的零售智能银行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27