京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与大规模网络安全感知技术初探
快速发展的互联网技术不断地改变人们的生活方式,然而,多层面的安全威胁和安全风险也不断出现。对于一个大型网络,在网络安全层面,除了访问控制、入侵检测、身份识别等基础技术手段,需要安全运维和管理人员能够及时感知网络中的异常事件与整体安全态势。对于安全运维人员来说,如何从成千上万的安全事件和日志中找到最有价值、最需要处理和解决的安全问题,从而保障网络的安全状态,是他们最关心也是最需要解决的问题。与此同时,对于安全管理者和高层管理者而言,如何描述当前网络安全的整体状况,如何预测和判断风险发展的趋势,如何指导下一步安全建设与规划,则是一道持久的难题。
随着大数据技术的成熟、应用与推广,网络安全态势感知技术有了新的发展方向,大数据技术特有的海量存储、并行计算、高效查询等特点,为大规模网络安全态势感知的关键技术创造了突破的机遇。本文将对大规模网络环境下的安全态势感知、大数据技术在安全感知方面的促进做一些探讨。
对于一个大规模的网络而言,面临的风险也是巨大的,可分为广度风险和深度风险。从广度上讲,以中国移动的CMNET网络为例,所辖IP地址超过3000万个,提供对外服务的网站数千个,规模大、节点类型丰富多样,伴随其中的安全问题随网络节点数量的增加呈指数级上升。从深度上讲,下一代移动互联网安全威胁主要表现在传统攻击依然存在且手段多样、APT(高级持续性威胁)攻击逐渐增多且造成的损失不断增大。而攻击者的工具和手段呈现平台化、集成化和自动化的特点,具有更强的隐蔽性、更长的攻击与潜伏时间、更加明确和特定的攻击目标。以上造成了下一代安全威胁具有更强的杀伤能力与逃避能力。结合广度风险与深度风险来看,大规模网络所引发的安全保障的复杂度激增,主要面临的问题包括:安全数据量巨大;安全事件被割裂,从而难以感知;安全的整体状况无法描述。
网络安全感知能力具体可分为资产感知、脆弱性感知、安全事件感知和异常行为感知4个方面。资产感知是指自动化快速发现和收集大规模网络资产的分布情况、更新情况、属性等信息;脆弱性感知则包括3个层面的脆弱性感知能力:不可见、可见、可利用;安全事件感知是指能够确定安全事件发生的时间、地点、人物、起因、经过和结果;异常行为感知是指通过异常行为判定风险,以弥补对不可见脆弱性、未知安全事件发现的不足,主要面向的是感知未知的攻击。
一个相对完整的网络安全感知的能力模型与架构设计如下图所示:
随着Hadoop、NoSQL等技术的兴起,BigData大数据的应用逐渐增多和成熟,而大数据自身拥有Velocity快速处理、Volume大数据量存储、Variety支持多类数据格式三大特性。大数据的这些天生特性,恰巧可以用于大规模网络的安全感知。首先,多类数据格式可以使网络安全感知获取更多类型的日志数据,包括网络与安全设备的日志、网络运行情况信息、业务与应用的日志记录等;其次,大数据量存储与快速处理为高速网络流量的深度安全分析提供了技术支持,可以为高智能模型算法提供计算资源;最后,在异常行为的识别过程中,核心是对正常业务行为与异常攻击行为之间的未识别行为进行离群度分析,大数据使得在分析过程中采用更小的匹配颗粒与更长的匹配时间成为可能。
中国移动自2010年起在云计算和大数据方面就开始了积极探索。中国移动的“大云”系统目前已实现了分布式海量数据仓库、分布式计算框架、云存储系统、弹性计算系统、并行数据挖掘工具等关键功能。在“大云”系统的基础上,中国移动的网络安全感知也具备了一定的技术积累,进行了大规模网络安全感知和防御体系的技术研究,在利用云平台进行脆弱性发现方面的智能型任务调度算法、主机和网络异常行为发现模式等关键技术上均有突破,在安全运维中取得了一些显著的效果。
大数据的出现,扩展了计算和存储资源,提供了基础平台和大数据量处理的技术支撑,为安全态势的分析、预测创造了无限可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28