京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电信运营商的大数据转型之路
自2011年开始,大数据的概念逐渐进入人们的视野。IDC、麦肯锡相继发布了有关大数据的研究报告,将大数据比喻为“未来的金矿”;国内不少互联网公司也开始着手部署各自的大数据战略,纷纷采取注资或收购的方式,以便构建一个良好的大数据生态圈,在大数据的卡位战中先拔头筹。相比之下,作为一切网络数据的必经管道,电信运营商却仿佛迷失在OTT的战争中,虽坐拥金矿却视而不见,亦无从下手。在此情形下,如何顺应大数据时代的趋势,重新审视新形势下的机遇与挑战,探索可能的商业模式,是电信运营商面临的重要课题。
大数据浪潮
大数据并非是一个全新的概念,早在1980年,阿尔文托夫勒就在《第三次浪潮》一书中预言了由数据构成的“碎片化未来”,并将海量数据赞颂为“第三次浪潮的华彩乐章”。然而,大数据真正流行起来是在2011年之后,数据量呈几何指数上升,物联网、云计算等技术的日渐成熟使得数据的获取、存储和处理的成本急剧下降,促使大数据一时间成为了各方视线的焦点。
首先,伴随着移动终端、传感器的迅速普及以及社会化媒体等互联网应用的日益多样化,数据量呈现出爆发式的增长,数据集的规模已经达到了TB甚至是PB的级别。这些海量的、碎片化的数据不仅能够较为完整地刻画出人们在线行为,还可以通过各类传感设备的数据来记录实体经济的运行状况。其次,数据的种类也愈发丰富,不仅包含文本内容,还包括图片、音频、视频等非结构化数据,为数据的存储和搜索带来了很大挑战,这意味着传统意义上适用于文本内容存储和分析的数据库关联算法、语义分析等手段已经渐渐失效。第三,大数据蕴含着巨大的价值,但相比于庞大的数据规模,其价值密度却是非常稀疏的,可谓是“浪里淘沙、弥足珍贵”。例如,公安视频监控系统需要7×24小时的记录,但用于犯罪证据获取的也许只是短短数秒;对于零售产业的推荐系统,也只有通过海量数据的分析,才能进行较为精准的预测。第四,大数据需要实时的记录与响应,如动态的股价、路况信息以及电子商务的交易数据等,都需要实时的调用和处理,才能够充分体现出数据的价值所在。此外,社会化媒体、社交网站中的关系数据成为了大数据的价值倍增器,这是因为人们已经不可避免地镶嵌于人际关系网络中,个体的影响力会经由社交网络快速蔓延。不久前,作为全球最大零售商的沃尔玛也充分意识到了关系数据的重要性,在其社交基因组(Social Genome)计划中整合了用户在Facebook、Twitter中的关系数据,用以更精准地推测消费者的偏好。
综上所述,大数据的基本特征可以概括为规模化(Volume)、多样性(Variety)、高价值(Value)、速度快(Velocity)以及社会化(Social)等五个特点,即“4V+1S”的特点。这样的大数据浪潮,也深刻的影响了各个传统行业的发展轨迹,变革一触即发。
电信运营商的挑战
可以说,电信业近十年来的变革,是电信运营商上百年的历史上都是不曾有过的。尤其是,2009年来以来,3G技术突飞猛进,移动互联网日益普及,电信运营商的各种商业模式随之被打破。尽管电信运营商一直积极地优化3G网络、不断加强WLAN的部署,中国移动也已经开始力推LTE,但网络的持续扩容与升级并未给电信运营商带来十分可观的收入,今年第一季度的数据显示,三大运营商的传统业务和整体固网业务都受到了移动互联网的巨大冲击,增长趋缓甚至下滑。
并且,更为严峻的是,电信运营商的收入和流量已经失去了关联性:从技术层面讲,3G的出现打破了电信运营商所构建的WAP时代的篱笆墙,现在用户不再需要通过WAP网端接入互联网,而是可以随时随地地“触网”,甚至不用打开浏览器就保持时刻在线,传统意义上打开浏览器、输入网址、关键词搜索的网络使用模式已不复存在,如今更多的人选择直接点击APP,开启浏览互联网的进程;虽然私网服务的篱笆花园被推翻,但是运营商还可以提升管道价值,基于自有网络做好自有增值服务,但在业务层面上讲,大量OTT业务涌现,进一步削弱了运营商的管道价值,米聊、微信等社交应用在几乎不改变用户使用习惯的同时,给运营商的短信、彩信业务带来的巨大的冲击,Viber、Skype等也让运营商的语音收入大幅缩水,视频、阅读、音乐等其他增值业务更是受到了来自互联网方方面面的冲击。
不仅如此,在大数据时代,电信运营商还面临着来自数据、管理方面的巨大挑战。海量的半结构化和非结构化的数据大大降低了数据处理的效率,给运营商带来了巨大的数据存储和读写压力。如若不能缩短数据处理的周期,很多数据的价值都会被极大地稀释。此外,庞大的数据规模和复杂的数据种类也给运营商带来了管理层面的难题。对于电信运营商自身而言,每一个省、市公司都是相对独立的,仅一个省的单月计费清单数量就多达数十亿条,而大数据时代要求跨地域、跨业务的数据整合和分析,对运营商统一的数据整合和管理能力提出了非常高的要求。
更为重要的是,大数据也引发了隐私方面的担忧,最近的“棱镜”事件为身处大数据浪潮中的政府和企业敲响了警钟,以牺牲个人隐私为代价的商业价值的创造将会受到来自全球范围的共同抵制,电信运营商也必须充分重视用户的隐私问题,对涉及用户资料、行为特征、地理位置等涉及个人隐私的信息加以保护。
掘金大数据
尽管面临着来自业务、数据、管理等多方面的挑战,但作为信息服务的龙头产业,电信运营商是用户享用信息服务的必经管道,也因而拥有着其他互联网公司难以复制的天然禀赋。以互联网三巨头百度、腾讯、阿里巴巴为例,百度拥有着最丰富的搜索数据,腾讯拥有最为完备的关系数据,而阿里则是交易数据的王国,而电信运营商则记录了从搜索、社交到在线购物的全部过程,占有大数据竞争最基础的资源。正是这样,电信运营商无须和互联网公司过分计较一城一池的得失,因为无论OTT业务冲击如何,数据都被牢牢的控制在电信运营商的手里。因此,电信运营商需要从战略层面对大数据展开部署,通过对数据的深度分析来挖掘其核心价值,将数据转化为精准营销、精细化运营以及开拓市场的生产力。
作为全球第五大电信运营商,西班牙电信在大数据方面率先试水,并取得了一定的成效。首先,为推动数据业务的发展,西班牙电信成立了专门的数字部门Telefonica Digital,涉及金融服务、电子医疗、广告、云计算等多个技术和应用领域。这一部门的成立,使得原来分散在各地区、各分公司的业务有了统一管理,利于集约资源进行大数据的规划和部署。其次,为了应对OTT的挑战,西班牙电信采取了“拥抱”而非“抵触”的姿态,将旗下的VoIP服务提供商Jajah、社交网络Tuenti等业务整合进了Telefonica Digital,以此来构建良好的移动互联网生态,为用户提供全面的“触网”体验。第三,他们推出了一个名为“智慧足迹”的产品,将整个城市的不同区域网格化,并在此基础上绘制客户流量分布图,不仅能够依据用户分布情况帮助企业进行选址,还能够为政府的公共交通疏导提供决策建议。
由此可见,掌握着丰富用户数据的电信运营商在大数据的竞争中拥有着得天独厚的优势。电信运营商应从战略、平台和应用创新三个角度来重新思考其大数据时代的核心竞争力。一是从战略上重视大数据的价值,将数据资源作为其自身企业最重要的资产和生产力;二是转换思路,以开放的、融合的平台思路拥抱移动互联网这一全新的背景,努力为用户提供一体化的产品和服务感知;三是利用自身丰富的数据资源开展业务创新,积极探寻新形势下的商业模式,深入挖掘大数据所蕴含的无限商机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17