京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大家应该都有所了解,下面就简单介绍下Numpy,NumPy(Numerical Python)是一个用于科学计算第三方的Python包。
NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。下面本文将详细介绍关于python中numpy包使用教程之数组和相关操作的相关内容,下面话不多说,来一起看看详细的介绍:
一、数组简介
Numpy中,最重要的数据结构是:多维数组类型(numpy.ndarray)
ndarray由两部分组成:
实际所持有的数据;
描述这些数据的元数据(metadata)
数组(即矩阵)的维度被称为axes,维数称为rank
ndarray 的重要属性包括:
ndarray.ndim:数组的维数,也称为rank
ndarray.shape:数组各维的大小,对一个n行m列的矩阵来说, shape 为 (n,m)
ndarray.size:元素的总数。
ndarray.dtype:每个元素的类型,可以是numpy.int32, numpy.int16, and numpy.float64等
ndarray.itemsize:每个元素占用的字节数。
ndarray.data:指向数据内存。
二、数组的使用
使用numpy前要先导入模块,使用下面的语句导入模块:
improt numpy as np #其中np为numpy的别名,是一种习惯用法
1.使用array方法生成数组
array,也就是数组,是numpy中最基础的数据结构,最关键的属性是维度和元素类型,在numpy中,可以非常方便地创建各种不同类型的多维数组,并且执行一些基本基本操作,生成数组的方法有一下几种:
以list或tuple变量产生以为数组:
>>> print np.array([1,2,3,4])
[1 2 3 4]
>>> print np.array((1.2,2,3,4))
[ 1.2 2. 3. 4. ]
以list或tuple变量为元素产生二维数组或者多维数组:
>>> x = np.array(((1,2,3),(4,5,6)))
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> y = np.array([[1,2,3],[4,5,6]])
>>> y
array([[1, 2, 3],
[4, 5, 6]])
2.使用numpy.arange方法生成数组
>>> print np.arange(15)
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
>>> print type(np.arange(15))
<type 'numpy.ndarray'>
3.使用内置函数生成特殊矩阵(数组)
零矩阵
>>> print np.zeros((3,4))
[[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
一矩阵
>>> print np.ones((3,4))
[[ 1. 1. 1. 1.]
[1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
单位矩阵
>>> print np.eye(3)
[[ 1. 0. 0.]
[0. 1. 0.]
[ 0. 0. 1.]]
4.索引与切片
>>> x = np.array(((1,2,3),(4,5,6)))
>>> x[1,2] #获取第二行第三列的数
6
>>> y=x[:,1] #获取第二列
>>> y
array([2, 5])
与python语法一致,不再举例。
5.获取数组属性
>>> a = np.zeros((2,2,2))
>>> print a.ndim #数组的维数
3
>>> print a.shape #数组每一维的大小
(2, 2, 2)
>>> print a.size #数组的元素数
8
>>> print a.dtype #元素类型
float64
>>> print a.itemsize #每个元素所占的字节数
8
6.数组变换
多维转换为一维:
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> x.flatten()
array([1, 2, 3, 4, 5, 6])
一维转换为多维:
>>> print np.arange(15).reshape(3,5) #改变形状,将一维的改成三行五列
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
转置:
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> x.transpose()
array([[1, 4],
[2, 5],
[3, 6]])
7.数组组合
水平组合:
>>> y=x
>>> numpy.hstack((x,y))
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]]
垂直组合
>>> numpy.vstack((x,y))
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
用concatenate函数可以同时实现这两种方式,通过指定axis参数,默认为0,垂直组合。
>>> numpy.concatenate((x,y))
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
>>> numpy.concatenate((x,y),axis=1)
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]])
8.数组分割
垂直分割
>>> z
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
>>> numpy.vsplit(z,2) #注意这里设置的分割数目必须可以被行数整除
[array([[1, 2, 3],
[4, 5, 6]]), array([[1, 2, 3],
[4, 5, 6]])]
水平分割
>>> numpy.hsplit(z,3)
[array([[1],
[4],
[1],
[4]]), array([[2],
[5],
[2],
[5]]), array([[3],
[6],
[3],
[6]])]
用split函数可以同时实现这两个效果,通过设置其axis参数区别,与组合类似,这里不在演示。
三、矩阵
通过上面对数组的操作可以知道,numpy中可以通过数组模拟矩阵,但是numpy也有专门处理矩阵的数据结构——matrix。
1.生成矩阵
>>> numpy.mat('1 2 3;4 5 6;7 8 9')
matrix([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
2.数组矩阵转化
矩阵转数组
>>> m=numpy.mat('1 2 3;4 5 6;7 8 9')
>>> numpy.array(m)
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
数组转矩阵
>>> n=numpy.array(m)
>>> numpy.mat(n)
matrix([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
3.矩阵方法
求逆:
>>> m.I
matrix([[ -4.50359963e+15, 9.00719925e+15, -4.50359963e+15],
[ 9.00719925e+15, -1.80143985e+16, 9.00719925e+15],
[ -4.50359963e+15, 9.00719925e+15, -4.50359963e+15]])
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27