京公网安备 11010802034615号
经营许可证编号:京B2-20210330
十个做图表心得,看完就能用
在我从事设计工作的 15 年中,大多数时间都在设计复杂、有大量数据的网页和 app。可以说,我每天都在和图表打交道,这篇文章,将和大家分享图表设计的 10 个原则。好好运用这些原则,可以帮你设计出更具美学、更受欢迎、更加实用的图表。
1. 使用常见图表类型
作为设计师,使用独具特色的不常见图表(比如流线图),你会觉得很有趣,而且创意十足。但是,不应该让用户去学习如何阅读你「原创」的图表。
所以,最好使用常见的图表,比如:面积图,条形图/柱状图,折线图,或者饼状图/圆环图。
2. 饼状图不超过 5 个分类
一个通用的经验法则——如果要使用饼状图,尽量将区块数量控制在 5 个以内。区块数量越多,用户读取数据的难度越大。遇到此类情况,建议采用其它类型图表。
3. 归类整理,顺序排列
只要内容不涉及日期,你可以通过升序或降序归类整理图表内容,从而大大提高图表的可读性。这个原则通常适用于条形图/柱状图。
4. 避免使用 3D 图表
只要不涉及 VR, 绝对没有必要使用 3D 图表,而且有些 3D 图表的「颜值」还很低。
5. 避免随机生成颜色
有些图表框架会随机生成代表各组数据的颜色。其背后的算法,很少和整体配色方案相匹配,而且不同数据组之间的视觉区别也不够明显。
最好还是通过人工配色——确保有足够的颜色可用,并且不同颜色间的辨识要清晰。
6. 趋势线会分散用户注意力
趋势线看起来可以使图表界面更丰富。但实际上,它并没有起任何作用,有用的还是线条下面的点状数据。如果你决定使用趋势线,至少可以让用户能手动隐藏它。
7. 不要依赖数据提示框
将数据提示框当作额外或补充信息来源。换句话说,数据提示框不应被视作用户了解标绘值的唯一途径。
8. 图例要视情况使用
当图表只有一种数据信息时,用图表标题说明数据信息即可。加上图例,纯属多此一举。
9. 网格线要视情况使用
网格线的作用,在于帮助用户了解轴标签对应的数据信息。然而,在简单图表中,网格线并不是必要的。如果非要用网格线,要注意是否需要在 X 轴和 Y 轴上同时使用。通常,在一个轴上标注网格线就足够了。
在套用模板时,不要一套了事,而是多进行对比,找出最适合自己的那一款。
当然,也有例外……
在围绕数据而设计时,你应该充分利用你的判断力和创造力。虽然数据有时会相当复杂,但要围绕数据设计出有意义的故事,总不能千篇一律。
当然,也许你会发现,这 10 个原则可能都不适用于你所处理的数据。时不时地「违背原则」,也不是大问题。但不容忽视的是,一定要在现实情况下测试你的设计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12