京公网安备 11010802034615号
经营许可证编号:京B2-20210330
十个做图表心得,看完就能用
在我从事设计工作的 15 年中,大多数时间都在设计复杂、有大量数据的网页和 app。可以说,我每天都在和图表打交道,这篇文章,将和大家分享图表设计的 10 个原则。好好运用这些原则,可以帮你设计出更具美学、更受欢迎、更加实用的图表。
1. 使用常见图表类型
作为设计师,使用独具特色的不常见图表(比如流线图),你会觉得很有趣,而且创意十足。但是,不应该让用户去学习如何阅读你「原创」的图表。
所以,最好使用常见的图表,比如:面积图,条形图/柱状图,折线图,或者饼状图/圆环图。
2. 饼状图不超过 5 个分类
一个通用的经验法则——如果要使用饼状图,尽量将区块数量控制在 5 个以内。区块数量越多,用户读取数据的难度越大。遇到此类情况,建议采用其它类型图表。
3. 归类整理,顺序排列
只要内容不涉及日期,你可以通过升序或降序归类整理图表内容,从而大大提高图表的可读性。这个原则通常适用于条形图/柱状图。
4. 避免使用 3D 图表
只要不涉及 VR, 绝对没有必要使用 3D 图表,而且有些 3D 图表的「颜值」还很低。
5. 避免随机生成颜色
有些图表框架会随机生成代表各组数据的颜色。其背后的算法,很少和整体配色方案相匹配,而且不同数据组之间的视觉区别也不够明显。
最好还是通过人工配色——确保有足够的颜色可用,并且不同颜色间的辨识要清晰。
6. 趋势线会分散用户注意力
趋势线看起来可以使图表界面更丰富。但实际上,它并没有起任何作用,有用的还是线条下面的点状数据。如果你决定使用趋势线,至少可以让用户能手动隐藏它。
7. 不要依赖数据提示框
将数据提示框当作额外或补充信息来源。换句话说,数据提示框不应被视作用户了解标绘值的唯一途径。
8. 图例要视情况使用
当图表只有一种数据信息时,用图表标题说明数据信息即可。加上图例,纯属多此一举。
9. 网格线要视情况使用
网格线的作用,在于帮助用户了解轴标签对应的数据信息。然而,在简单图表中,网格线并不是必要的。如果非要用网格线,要注意是否需要在 X 轴和 Y 轴上同时使用。通常,在一个轴上标注网格线就足够了。
在套用模板时,不要一套了事,而是多进行对比,找出最适合自己的那一款。
当然,也有例外……
在围绕数据而设计时,你应该充分利用你的判断力和创造力。虽然数据有时会相当复杂,但要围绕数据设计出有意义的故事,总不能千篇一律。
当然,也许你会发现,这 10 个原则可能都不适用于你所处理的数据。时不时地「违背原则」,也不是大问题。但不容忽视的是,一定要在现实情况下测试你的设计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05