京公网安备 11010802034615号
经营许可证编号:京B2-20210330
十个做图表心得,看完就能用
在我从事设计工作的 15 年中,大多数时间都在设计复杂、有大量数据的网页和 app。可以说,我每天都在和图表打交道,这篇文章,将和大家分享图表设计的 10 个原则。好好运用这些原则,可以帮你设计出更具美学、更受欢迎、更加实用的图表。
1. 使用常见图表类型
作为设计师,使用独具特色的不常见图表(比如流线图),你会觉得很有趣,而且创意十足。但是,不应该让用户去学习如何阅读你「原创」的图表。
所以,最好使用常见的图表,比如:面积图,条形图/柱状图,折线图,或者饼状图/圆环图。
2. 饼状图不超过 5 个分类
一个通用的经验法则——如果要使用饼状图,尽量将区块数量控制在 5 个以内。区块数量越多,用户读取数据的难度越大。遇到此类情况,建议采用其它类型图表。
3. 归类整理,顺序排列
只要内容不涉及日期,你可以通过升序或降序归类整理图表内容,从而大大提高图表的可读性。这个原则通常适用于条形图/柱状图。
4. 避免使用 3D 图表
只要不涉及 VR, 绝对没有必要使用 3D 图表,而且有些 3D 图表的「颜值」还很低。
5. 避免随机生成颜色
有些图表框架会随机生成代表各组数据的颜色。其背后的算法,很少和整体配色方案相匹配,而且不同数据组之间的视觉区别也不够明显。
最好还是通过人工配色——确保有足够的颜色可用,并且不同颜色间的辨识要清晰。
6. 趋势线会分散用户注意力
趋势线看起来可以使图表界面更丰富。但实际上,它并没有起任何作用,有用的还是线条下面的点状数据。如果你决定使用趋势线,至少可以让用户能手动隐藏它。
7. 不要依赖数据提示框
将数据提示框当作额外或补充信息来源。换句话说,数据提示框不应被视作用户了解标绘值的唯一途径。
8. 图例要视情况使用
当图表只有一种数据信息时,用图表标题说明数据信息即可。加上图例,纯属多此一举。
9. 网格线要视情况使用
网格线的作用,在于帮助用户了解轴标签对应的数据信息。然而,在简单图表中,网格线并不是必要的。如果非要用网格线,要注意是否需要在 X 轴和 Y 轴上同时使用。通常,在一个轴上标注网格线就足够了。
在套用模板时,不要一套了事,而是多进行对比,找出最适合自己的那一款。
当然,也有例外……
在围绕数据而设计时,你应该充分利用你的判断力和创造力。虽然数据有时会相当复杂,但要围绕数据设计出有意义的故事,总不能千篇一律。
当然,也许你会发现,这 10 个原则可能都不适用于你所处理的数据。时不时地「违背原则」,也不是大问题。但不容忽视的是,一定要在现实情况下测试你的设计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31