京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python操作SQLite数据库的方法详解
本文实例讲述了Python操作SQLite数据库的方法。分享给大家供大家参考,具体如下:
SQLite简单介绍
SQLite数据库是一款非常小巧的嵌入式开源数据库软件,也就是说没有独立的维护进程,所有的维护都来自于程序本身。它是遵守ACID的关联式数据库管理系统,它的设计目标是嵌入式的,而且目前已经在很多嵌入式产品中使用了它,它占用资源非常的低,在嵌入式设备中,可能只需要几百K的内存就够了。它能够支持Windows/Linux/Unix等等主流的操作系统,同时能够跟很多程序语言相结合,比如 Tcl、C#、PHP、Java等,还有ODBC接口,同样比起Mysql、PostgreSQL这两款开源世界著名的数据库管理系统来讲,它的处理速度比他们都快。SQLite第一个Alpha版本诞生于2000年5月. 至今已经有10个年头,SQLite也迎来了一个版本 SQLite 3已经发布。
安装与使用
1.导入Python SQLITE数据库模块
Python2.5之后,内置了SQLite3,成为了内置模块,这给我们省了安装的功夫,只需导入即可~
import sqlite3
2. 创建/打开数据库
在调用connect函数的时候,指定库名称,如果指定的数据库存在就直接打开这个数据库,如果不存在就新创建一个再打开。
cx = sqlite3.connect("E:/test.db")
也可以创建数据库在内存中。
con = sqlite3.connect(":memory:")
3.数据库连接对象
打开数据库时返回的对象cx就是一个数据库连接对象,它可以有以下操作:
① commit()--事务提交
② rollback()--事务回滚
③ close()--关闭一个数据库连接
④ cursor()--创建一个游标
关于commit(),如果isolation_level隔离级别默认,那么每次对数据库的操作,都需要使用该命令,你也可以设置isolation_level=None,这样就变为自动提交模式。
4.使用游标查询数据库
我们需要使用游标对象SQL语句查询数据库,获得查询对象。 通过以下方法来定义一个游标。
cu=cx.cursor()
游标对象有以下的操作:
① execute()--执行sql语句
② executemany--执行多条sql语句
③ close()--关闭游标
④ fetchone()--从结果中取一条记录,并将游标指向下一条记录
⑤ fetchmany()--从结果中取多条记录
⑥ fetchall()--从结果中取出所有记录
⑦ scroll()--游标滚动
1. 建表
代码如下:
cu.execute("create table catalog (id integer primary key,pid integer,name varchar(10) UNIQUE,nickname text NULL)")
上面语句创建了一个叫catalog的表,它有一个主键id,一个pid,和一个name,name是不可以重复的,以及一个nickname默认为NULL。
2. 插入数据
请注意避免以下写法:
# Never do this -- insecure 会导致注入攻击
pid=200
c.execute("... where pid = '%s'" % pid)
正确的做法如下,如果t只是单个数值,也要采用t=(n,)的形式,因为元组是不可变的。
for t in[(0,10,'abc','Yu'),(1,20,'cba','Xu')]:
cx.execute("insert into catalog values (?,?,?,?)", t)
简单的插入两行数据,不过需要提醒的是,只有提交了之后,才能生效.我们使用数据库连接对象cx来进行提交commit和回滚rollback操作.
cx.commit()
3.查询
cu.execute("select * from catalog")
要提取查询到的数据,使用游标的fetch函数,如:
In [10]: cu.fetchall()
Out[10]: [(0, 10, u'abc', u'Yu'), (1, 20, u'cba', u'Xu')]
如果我们使用cu.fetchone(),则首先返回列表中的第一项,再次使用,则返回第二项,依次下去.
4.修改
In [12]: cu.execute("update catalog set name='Boy' where id = 0")
In [13]: cx.commit()
注意,修改数据以后提交
5.删除
cu.execute("delete from catalog where id = 1")
cx.commit()
6.使用中文
请先确定你的IDE或者系统默认编码是utf-8,并且在中文前加上u
x=u'鱼'
cu.execute("update catalog set name=? where id = 0",x)
cu.execute("select * from catalog")
cu.fetchall()
[(0, 10, u'\u9c7c', u'Yu'), (1, 20, u'cba', u'Xu')]
如果要显示出中文字体,那需要依次打印出每个字符串
In [26]: for item in cu.fetchall():
....: for element in item:
....: print element,
....: print
....:
0 10 鱼 Yu
1 20 cba Xu
7.Row类型
Row提供了基于索引和基于名字大小写敏感的方式来访问列而几乎没有内存开销。 原文如下:
sqlite3.Row provides both index-based and case-insensitive name-based access to columns with almost no memory overhead. It will probably be better than your own custom dictionary-based approach or even a db_row based solution.
Row对象的详细介绍
class sqlite3.Row
A Row instance serves as a highly optimized row_factory for Connection objects. It tries to mimic a tuple in most of its features.
It supports mapping access by column name and index, iteration, representation, equality testing and len().
If two Row objects have exactly the same columns and their members are equal, they compare equal.
Changed in version 2.6: Added iteration and equality (hashability).
keys()
This method returns a tuple of column names. Immediately after a query, it is the first member of each tuple in Cursor.description.
New in version 2.6.
下面举例说明
In [30]: cx.row_factory = sqlite3.Row
In [31]: c = cx.cursor()
In [32]: c.execute('select * from catalog')
Out[32]:
In [33]: r = c.fetchone()
In [34]: type(r)
Out[34]:
In [35]: r
Out[35]:
In [36]: print r
(0, 10, u'\u9c7c', u'Yu')
In [37]: len(r)
Out[37]: 4
In [39]: r[2] #使用索引查询
Out[39]: u'\u9c7c'
In [41]: r.keys()
Out[41]: ['id', 'pid', 'name', 'nickname']
In [42]: for e in r:
....: print e,
....:
0 10 鱼 Yu
使用列的关键词查询
In [43]: r['id']
Out[43]: 0
In [44]: r['name']
Out[44]: u'\u9c7c'
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20