京公网安备 11010802034615号
经营许可证编号:京B2-20210330
专家如何看待大数据时代的食品安全
7月8日下午,以“大数据时代:共筑全球食品安全”为主题的大数据时代的食品安全论坛召开。复旦大学校长、复旦发展研究院院长、中国科学院院士许宁生致辞,贵州省人民政府原省长、中国食品工业协会原会长石秀诗,中国工程院院士、中国工程院原副院长邬贺铨,美国联邦政府食品药物管理局、食品安全与营养应用中心研究员Perry G.Wang,蒙牛乳业(集团)股份有限公司质量技术总监宋晓东,德国农业协会DLG食品培训中心主任Simone Schiller,德国弗劳恩霍夫技术协会食品安全联盟主席Mark Bücking,德国杜伊斯堡埃森东亚研究所首席研究员Martin Heinberg,国家食品安全风险评估中心技术总师吴永宁,新西兰初级产业部MPI、亚太食品安全中心执行董事Helen Darling,茅台集团党委书记兼总经理李保芳等嘉宾发表了主题演讲。
石秀诗: 确保食品安全必须在治本上下功夫,一是要强化法治约束,着力构建食品安全社会共治格局;二是要紧紧抓住源头治理,把农业种植养殖环节的安全风险隐患尽快降下来;三是要加快建立健全食品安全诚信自律制度,把食品安全主体责任真正落实到每一个食品生产经营者;四是要进一步加强食品安全全程追溯管理,保证不安全隐患能准确及时发现,妥善处理,确保安全。
邬贺铨: 食品安全需要对食品从生产到销售全链条管理,需要法律保障,需要从生产、流通、使用、监管、科技和法制等多方面来把关。大数据可以起到对食品安全的“补天石”作用,但也需要挖掘与提炼。食品安全大数据需要政府、企业、民众共同提供。
Perry G.Wang: FDA(食品及药物管理局)帮助美国各地维持高水平的食品安全,为其提供指导、模型规范、培训等技术支持。食品安全营养中心主要关注食品安全、食物防御、营养、保健品和化妆品安全等五个领域。
宋晓东: 蒙牛集团应用物联网技术,依托DC305、LIMS等系统,打造产业链产品的监控管理和追溯体系,保障产业链的食品安全控制能力。利用质量大数据分析,对物料、产品的核心指标进行信息化实时管理,实现质量自动化、数字化的管理,达到产品质量实时监控,从而保障食品安全。
Simone Schiller: DLG(德国农业协会)系统是通过对流程和产品认证两个方面的把控来实现食物监测和认证。流程认证包括审计生产设施、文件及可追溯性,并且可以控制食品安全和卫生。产品认证是包括实验室测试、评估报告及感官测试等方式。
Mark Bücking: 食品安全的驱动力有消费者、媒体或政治、科学及管理。我们主要是通过控制整个食品供应链保证食品安全。大数据的解读和分析对食品安全领域是很重要的挑战。
Martin Heinberg: 中国消费者对食品安全有很高的认识,但是食品安全的知识、标签及鉴别能力有限,通过消费者教育、消费者保证、可靠的信息源及质量标识来降低此类风险。
吴永宁: 国家需要建立统一的食品安全国家标准制度、实施国家食品安全风险监测及评估制度、建立全程食品安全溯源制度来保障食品安全。风险控制是保障食品安全的现实目标,并通过危害识别、危害特征描述、暴露评估及风险特征描述等四个步骤进行评估。
Helen Darling: 现在我们面对的挑战是建立依靠标签来识别那些无法鉴别的食物是什么,以及开发一些测试去鉴定该标签鉴定是否正确的一些方法。通过知道生产方法、了解供应链缺陷、适当运用科技、了解供应链合作伙伴、建立可信的合作关系以及了解贸易的地缘政治环境去建立品牌和降低风险,从而减少食物欺诈的现象。
李保芳: 在大数据战略的指引下,不断推动工业化与信息化的融合,启动“大数据茅台”战略,将生产销售流程与质量标准体系大数据化,搭建种、购、产、存、销全产业链的大数据平台,实现生产全过程信息的数据化采集,为食品安全建设精准的大数据体系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22