
简单介绍Python的轻便web框架Bottle
这篇文章主要介绍了Python的轻便web框架Bottle,因其注重轻便的设计,与Flask一样,Bottle框架的人气同样也非常高,需要的朋友可以参考下.
基本映射
映射使用在根据不同URLs请求来产生相对应的返回内容.Bottle使用route() 修饰器来实现映射.
from bottle import route, run@route('/hello')def hello():
return "Hello World!"run() # This starts the HTTP server
运行这个程序,访问http://localhost:8080/hello将会在浏览器里看到 "Hello World!".
GET, POST, HEAD, ...
这个映射装饰器有可选的关键字method默认是method='GET'. 还有可能是POST,PUT,DELETE,HEAD或者监听其他的HTTP请求方法.
from bottle import route, request@route('/form/submit', method='POST')def form_submit():
form_data = request.POST
do_something(form_data)
return "Done"
动态映射
你可以提取URL的部分来建立动态变量名的映射.
@route('/hello/:name')def hello(name):
return "Hello %s!" % name
默认情况下, 一个:placeholder会一直匹配到下一个斜线.需要修改的话,可以把正则字符加入到#s之间:
@route('/get_object/:id#[0-9]+#')def get(id):
return "Object ID: %d" % int(id)
或者使用完整的正则匹配组来实现:
@route('/get_object/(?P<id>[0-9]+)')def get(id):
return "Object ID: %d" % int(id)
正如你看到的,URL参数仍然是字符串, 即使你正则里面是数字.你必须显式的进行类型强制转换.
@validate() 装饰器
Bottle 提供一个方便的装饰器validate() 来校验多个参数.它可以通过关键字和过滤器来对每一个URL参数进行处理然后返回请求.
from bottle import route, validate# /test/validate/1/2.3/4,5,6,7@route('/test/validate/:i/:f/:csv')@validate(i=int, f=float, csv=lambda x: map(int, x.split(',')))def validate_test(i, f, csv):
return "Int: %d, Float:%f, List:%s" % (i, f, repr(csv))
你可能需要在校验参数失败时抛出ValueError.
返回文件流和JSON
WSGI规范不能处理文件对象或字符串.Bottle自动转换字符串类型为iter对象.下面的例子可以在Bottle下运行, 但是不能运行在纯WSGI环境下.
@route('/get_string')def get_string():
return "This is not a list of strings, but a single string"@route('/file')def get_file():
return open('some/file.txt','r')
字典类型也是允许的.会转换成json格式,自动返回Content-Type: application/json.
@route('/api/status')def api_status():
return {'status':'online', 'servertime':time.time()}
你可以关闭这个特性:bottle.default_app().autojson = False
Cookies
Bottle是把cookie存储在request.COOKIES变量中.新建cookie的方法是response.set_cookie(name, value[, **params]). 它可以接受额外的参数,属于SimpleCookie的有有效参数.
from bottle import responseresponse.set_cookie('key','value', path='/', domain='example.com', secure=True, expires=+500, ...)
设置max-age属性(它不是个有效的Python参数名) 你可以在实例中修改 cookie.SimpleCookie inresponse.COOKIES.
from bottle import responseresponse.COOKIES['key'] = 'value'response.COOKIES['key']['max-age'] = 500
模板
Bottle使用自带的小巧的模板.你可以使用调用template(template_name, **template_arguments)并返回结果.
@route('/hello/:name')def hello(name):
return template('hello_template', username=name)
这样就会加载hello_template.tpl,并提取URL:name到变量username,返回请求.
hello_template.tpl大致这样:
<h1>Hello {{username}}</h1><p>How are you?</p>
模板搜索路径
模板是根据bottle.TEMPLATE_PATH列表变量去搜索.默认路径包含['./%s.tpl', './views/%s.tpl'].
模板缓存
模板在编译后在内存中缓存.修改模板不会更新缓存,直到你清除缓存.调用bottle.TEMPLATES.clear().
模板语法
模板语法是围绕Python很薄的一层.主要目的就是确保正确的缩进块.下面是一些模板语法的列子:
%...Python代码开始.不必处理缩进问题.Bottle会为你做这些.
%end关闭一些语句%if ...,%for ...或者其他.关闭块是必须的.
{{...}}打印出Python语句的结果.
%include template_name optional_arguments包括其他模板.
每一行返回为文本.
Example:
%header = 'Test Template'
%items = [1,2,3,'fly']
%include http_header title=header, use_js=['jquery.js', 'default.js']<h1>{{header.title()}}</h1><ul>%for item in items: <li>
%if isinstance(item, int):
Zahl: {{item}}
%else:
%try:
Other type: ({{type(item).__name__}}) {{repr(item)}}
%except:
Error: Item has no string representation.
%end try-block (yes, you may add comments here)
%end </li>
%end</ul>%include http_footer
Key/Value数据库
Bottle(>0.4.6)通过bottle.db模块变量提供一个key/value数据库.你可以使用key或者属性来来存取一个数据库对象.调用 bottle.db.bucket_name.key_name和bottle.db[bucket_name][key_name].
只要确保使用正确的名字就可以使用,而不管他们是否已经存在.
存储的对象类似dict字典, keys和values必须是字符串.不支持 items() and values()这些方法.找不到将会抛出KeyError.
持久化
对于请求,所有变化都是缓存在本地内存池中. 在请求结束时,自动保存已修改部分,以便下一次请求返回更新的值.数据存储在bottle.DB_PATH文件里.要确保文件能访问此文件.
Race conditions
一般来说不需要考虑锁问题,但是在多线程或者交叉环境里仍是个问题.你可以调用 bottle.db.save()或者botle.db.bucket_name.save()去刷新缓存,但是没有办法检测到其他环境对数据库的操作,直到调用bottle.db.save()或者离开当前请求.
Example
from bottle import route, db@route('/db/counter')def db_counter():
if 'hits' not in db.counter:
db.counter.hits = 0
db['counter']['hits'] += 1
return "Total hits: %d!" % db.counter.hits
使用WSGI和中间件
bottle.default_app()返回一个WSGI应用.如果喜欢WSGI中间件模块的话,你只需要声明bottle.run()去包装应用,而不是使用默认的.
from bottle import default_app, runapp = default_app()newapp = YourMiddleware(app)run(app=newapp)
默认default_app()工作
Bottle创建一个bottle.Bottle()对象和装饰器,调用bottle.run()运行. bottle.default_app()是默认.当然你可以创建自己的bottle.Bottle()实例.
from bottle import Bottle, runmybottle = Bottle()@mybottle.route('/')def index():
return 'default_app'run(app=mybottle)
发布
Bottle默认使用wsgiref.SimpleServer发布.这个默认单线程服务器是用来早期开发和测试,但是后期可能会成为性能瓶颈.
有三种方法可以去修改:
使用多线程的适配器
负载多个Bottle实例应用
或者两者
多线程服务器
最简单的方法是安装一个多线程和WSGI规范的HTTP服务器比如Paste, flup, cherrypy or fapws3并使用相应的适配器.
from bottle import PasteServer, FlupServer, FapwsServer, CherryPyServerbottle.run(server=PasteServer) # Example
如果缺少你喜欢的服务器和适配器,你可以手动修改HTTP服务器并设置bottle.default_app()来访问你的WSGI应用.
def run_custom_paste_server(self, host, port):
myapp = bottle.default_app()
from paste import httpserver
httpserver.serve(myapp, host=host, port=port)
多服务器进程
一个Python程序只能使用一次一个CPU,即使有更多的CPU.关键是要利用CPU资源来负载平衡多个独立的Python程序.
单实例Bottle应用,你可以通过不同的端口来启动(localhost:8080, 8081, 8082, ...).高性能负载作为反向代理和远期每一个随机瓶进程的新要求,平衡器的行为,传播所有可用的支持与服务器实例的负载.这样,您就可以使用所有的CPU核心,甚至分散在不同的物理服
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15