
精准医学时代健康医疗大数据需要标准化
随着云计算、大数据、人工智能等信息技术与生物技术融合发展,健康医疗大数据产业正成为生物材料与信息的最好体现。去年国务院《关于促进和规范健康医疗大数据应用发展的指导意见》的出台后,健康医疗大数据受到政府、医院、科研机构和学术界越来越多的重视。
什么样的数据才是健康医疗大数据?贺林说,健康医疗大数据与交通大数据、气候大数据有根本性的区别,“一个是活的,一个是死的。”然而,目前我国的健康医疗大数据全是孤岛型的,没有联系,也没有标准化,这些孤立的、没有标准化的大数据没有价值。在贺林看来,健康医疗大数据的含义是把同类的或者相关的数据整合在一起后,得到一个相关网络的位点,也就是能从相关性的数据中挖掘出有价值的内容为人类服务,“比如平均温度提高2℃会带来哪些健康问题等。”
道格拉斯·弗里斯玛也表达了同样的观点。她表示,健康医疗大数据首先要有量,有非常强的流动性,还要有真实性。目前,健康医疗数据多种多样,但要成为大数据就需要收集和整合,并把这些数据进行分类和描述,因为只有准确的数据才能真正帮助了解病人的状况。“将不同类型的数据整合在一起,可以降低数据种类性,同时保证数据的真实性。”道格拉斯·弗里斯玛说。而且采集和整合健康医疗大数据的最终目的不是大数据本身,而是通过大数据来帮助治疗疾病,因为每个病人身上获取的数据很多,挖掘出这些数据的价值用于临床,诊治下一个病人的成功率就越来越高。
在美国,健康医疗大数据同样也存在数据的孤岛,“在研究的过程中,数据也是研究者所拥有的,很多人不愿意把数据拿出来分享,我们希望能打破,但难度很大。”因此,在道格拉斯·弗里斯玛看来,数据的整合仍是健康医疗大数据发展面临的一大挑战。不过,她也相信随着开放性科学不断地推动,及平台的日益增加,会让研究者公开他们的数据,最终形成有效的数据池。
大数据行业亟需建立标准
健康医疗大数据时代,大量医疗数据被源源不断采集。正如胡祥所说,目前医疗健康大数据的来源、产生源很多,如医院、医药公司等机构产生的医疗数据、各种基因组学的数据。对于整个健康医疗大数据行业来说,标准的制定也非常迫切。
“生命科学不仅是医学,还是生命基础科学研究,但各个机构之间从来没有一个统一标准,都是各做各的,最后出来的数据质量也不一样。”贺林说,有的不是大数据,小数据也说成大数据。
贺林表示,健康医疗大数据最后是要进行解读,但是如何去解读也没有统一化和标准化,“数学家在用数学的方法,统计学家用统计学的方法,生物学家要用遗传咨询的方法。”不同的解读方法,最后解读出来的结果也不一样。因此,在贺林看来,如何建立标准是健康医疗大数据行业要考虑的问题,“谁来制定标准,怎么样制定标准,比哪一步都重要。”
胡祥也表示,临床积累的健康医疗数据需要标准化,因为每个医生描述不一样,最后做数据分析和挖掘的结果也不一样。“未来重要的数据是组学数据,这些数据包括基因组、蛋白组、微生物组,最后读出来就是机器,可以高效识别,但这些数据的标准化与人类健康相关性很强。”胡祥说。
道格拉斯·弗里斯玛认为,中国有很大机会建立标准化统一平台,“中国既能造高铁,也能造医疗上的"高铁"。”
可用大数据训练人工智能
专家们非常看好健康医疗大数据在中国的应用前景。“随着各种传感器和可穿戴设备的应用,24小时持续采集的数据越来越多,如果把标准做好,方法学找到,用高效的方法把数据资源集中起来,我们的医疗健康大数据不会输给别人。”胡祥说。其次,目前我国正在推进医改,要解决医疗行业存在的一些问题,可以通过更加先进的工具和技术来解决。更为重要的是,目前我国的算法和计算能力正处于快速进步阶段,能够把核心数据高效的整理起来,以此为起点,可以通过这些数据快速地训练人工智能,推动人工智能的发展。
胡祥认为,在大健康医疗领域,人工智能才是未来的制高点。因此,下一步抢的是人工智能。“训练人工智能的前提是要有数据训练算法,现在我们就是要挖掘数据,人工智能一旦成熟以后,可能会出现各种各样的可穿戴设备,再把采集的各种数据推送上去以后,这些设备性能会高很多。”胡祥说。
“医疗健康大数据在国内很有发展前景。”刘宏芳表示,“大数据的发展要以人为本,通过大数据帮助普通老百姓分诊、预防疾病,目前中国拥有大量的人才,政府重视,企业不断创新,资本也在不断投入。”她建议,未来中国健康医疗数据的收集要全方位,这也可以避免走很多弯路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18