京公网安备 11010802034615号
经营许可证编号:京B2-20210330
精准医学时代健康医疗大数据需要标准化
随着云计算、大数据、人工智能等信息技术与生物技术融合发展,健康医疗大数据产业正成为生物材料与信息的最好体现。去年国务院《关于促进和规范健康医疗大数据应用发展的指导意见》的出台后,健康医疗大数据受到政府、医院、科研机构和学术界越来越多的重视。
什么样的数据才是健康医疗大数据?贺林说,健康医疗大数据与交通大数据、气候大数据有根本性的区别,“一个是活的,一个是死的。”然而,目前我国的健康医疗大数据全是孤岛型的,没有联系,也没有标准化,这些孤立的、没有标准化的大数据没有价值。在贺林看来,健康医疗大数据的含义是把同类的或者相关的数据整合在一起后,得到一个相关网络的位点,也就是能从相关性的数据中挖掘出有价值的内容为人类服务,“比如平均温度提高2℃会带来哪些健康问题等。”
道格拉斯·弗里斯玛也表达了同样的观点。她表示,健康医疗大数据首先要有量,有非常强的流动性,还要有真实性。目前,健康医疗数据多种多样,但要成为大数据就需要收集和整合,并把这些数据进行分类和描述,因为只有准确的数据才能真正帮助了解病人的状况。“将不同类型的数据整合在一起,可以降低数据种类性,同时保证数据的真实性。”道格拉斯·弗里斯玛说。而且采集和整合健康医疗大数据的最终目的不是大数据本身,而是通过大数据来帮助治疗疾病,因为每个病人身上获取的数据很多,挖掘出这些数据的价值用于临床,诊治下一个病人的成功率就越来越高。
在美国,健康医疗大数据同样也存在数据的孤岛,“在研究的过程中,数据也是研究者所拥有的,很多人不愿意把数据拿出来分享,我们希望能打破,但难度很大。”因此,在道格拉斯·弗里斯玛看来,数据的整合仍是健康医疗大数据发展面临的一大挑战。不过,她也相信随着开放性科学不断地推动,及平台的日益增加,会让研究者公开他们的数据,最终形成有效的数据池。
大数据行业亟需建立标准
健康医疗大数据时代,大量医疗数据被源源不断采集。正如胡祥所说,目前医疗健康大数据的来源、产生源很多,如医院、医药公司等机构产生的医疗数据、各种基因组学的数据。对于整个健康医疗大数据行业来说,标准的制定也非常迫切。
“生命科学不仅是医学,还是生命基础科学研究,但各个机构之间从来没有一个统一标准,都是各做各的,最后出来的数据质量也不一样。”贺林说,有的不是大数据,小数据也说成大数据。
贺林表示,健康医疗大数据最后是要进行解读,但是如何去解读也没有统一化和标准化,“数学家在用数学的方法,统计学家用统计学的方法,生物学家要用遗传咨询的方法。”不同的解读方法,最后解读出来的结果也不一样。因此,在贺林看来,如何建立标准是健康医疗大数据行业要考虑的问题,“谁来制定标准,怎么样制定标准,比哪一步都重要。”
胡祥也表示,临床积累的健康医疗数据需要标准化,因为每个医生描述不一样,最后做数据分析和挖掘的结果也不一样。“未来重要的数据是组学数据,这些数据包括基因组、蛋白组、微生物组,最后读出来就是机器,可以高效识别,但这些数据的标准化与人类健康相关性很强。”胡祥说。
道格拉斯·弗里斯玛认为,中国有很大机会建立标准化统一平台,“中国既能造高铁,也能造医疗上的"高铁"。”
可用大数据训练人工智能
专家们非常看好健康医疗大数据在中国的应用前景。“随着各种传感器和可穿戴设备的应用,24小时持续采集的数据越来越多,如果把标准做好,方法学找到,用高效的方法把数据资源集中起来,我们的医疗健康大数据不会输给别人。”胡祥说。其次,目前我国正在推进医改,要解决医疗行业存在的一些问题,可以通过更加先进的工具和技术来解决。更为重要的是,目前我国的算法和计算能力正处于快速进步阶段,能够把核心数据高效的整理起来,以此为起点,可以通过这些数据快速地训练人工智能,推动人工智能的发展。
胡祥认为,在大健康医疗领域,人工智能才是未来的制高点。因此,下一步抢的是人工智能。“训练人工智能的前提是要有数据训练算法,现在我们就是要挖掘数据,人工智能一旦成熟以后,可能会出现各种各样的可穿戴设备,再把采集的各种数据推送上去以后,这些设备性能会高很多。”胡祥说。
“医疗健康大数据在国内很有发展前景。”刘宏芳表示,“大数据的发展要以人为本,通过大数据帮助普通老百姓分诊、预防疾病,目前中国拥有大量的人才,政府重视,企业不断创新,资本也在不断投入。”她建议,未来中国健康医疗数据的收集要全方位,这也可以避免走很多弯路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22