京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python运算符重载用法实例分析
本文实例讲述了Python运算符重载用法。分享给大家供大家参考。具体如下:
在Python语言中提供了类似于C++的运算符重在功能:
一下为Python运算符重在调用的方法如下:
Method Overloads Call for
__init__ 构造函数 X=Class()
__del__ 析构函数 对象销毁
__add__ + X+Y,X+=Y
__or__ | X|Y,X|=Y
__repr__ 打印转换 print X,repr(X)
__str__ 打印转换 print X,str(X)
__call__ 调用函数 X()
__getattr_ 限制 X.undefine
__setattr__ 取值 X.any=value
__getitem__ 索引 X[key],
__len__ 长度 len(X)
__cmp__ 比较 X==Y,X<Y
__lt__ 小于 X<Y
__eq__ 等于 X=Y
__radd__ Right-Side + +X
__iadd__ += X+=Y
__iter__ 迭代 For In
1. 减法重载
class Number:
def __init__(self, start):
self.data = start
def __sub__(self, other): #minus method
return Number(self.data - other)
number = Number(20)
y = number – 10 # invoke __sub__ method
class Number:
def __init__(self, start):
self.data = start
def __sub__(self, other): #minus method
return Number(self.data - other)
number = Number(20)
y = number – 10 # invoke __sub__ method
2. 迭代重载
class indexer:
def __getitem__(self, index): #iter override
return index ** 2
X = indexer()
X[2]
for i in range(5):
print X[i]
class indexer:
def __getitem__(self, index): #iter override
return index ** 2
X = indexer()
X[2]
for i in range(5):
print X[i]
3. 索引重载
class stepper:
def __getitem__(self, i):
return self.data[i]
X = stepper()
X.data = 'Spam'
X[1] #call __getitem__
for item in X: #call __getitem__
print item
class stepper:
def __getitem__(self, i):
return self.data[i]
X = stepper()
X.data = 'Spam'
X[1] #call __getitem__
for item in X: #call __getitem__
print item
4. getAttr/setAttr重载
class empty:
def __getattr__(self,attrname):
if attrname == 'age':
return 40
else:
raise AttributeError,attrname
X = empty()
print X.age #call__getattr__
class accesscontrol:
def __setattr__(self, attr, value):
if attr == 'age':
# Self.attrname = value loops!
self.__dict__[attr] = value
else:
print attr
raise AttributeError, attr + 'not allowed'
X = accesscontrol()
X.age = 40 #call __setattr__
X.name = 'wang' #raise exception
class empty:
def __getattr__(self,attrname):
if attrname == 'age':
return 40
else:
raise AttributeError,attrname
X = empty()
print X.age #call__getattr__
class accesscontrol:
def __setattr__(self, attr, value):
if attr == 'age':
# Self.attrname = value loops!
self.__dict__[attr] = value
else:
print attr
raise AttributeError, attr + 'not allowed'
X = accesscontrol()
X.age = 40 #call __setattr__
X.name = 'wang' #raise exception
5. 打印重载
class adder:
def __init__(self, value=0):
self.data = value
def __add__(self, other):
self.data += other
class addrepr(adder):
def __repr__(self):
return 'addrepr(%s)' % self.data
x = addrepr(2) #run __init__
x + 1 #run __add__
print x #run __repr__
class adder:
def __init__(self, value=0):
self.data = value
def __add__(self, other):
self.data += other
class addrepr(adder):
def __repr__(self):
return 'addrepr(%s)' % self.data
x = addrepr(2) #run __init__
x + 1 #run __add__
print x #run __repr__
6. Call调用函数重载
class Prod:
def __init__(self, value):
self.value = value
def __call__(self, other):
return self.value * other
p = Prod(2) #call __init__
print p(1) #call __call__
print p(2)
class Prod:
def __init__(self, value):
self.value = value
def __call__(self, other):
return self.value * other
p = Prod(2) #call __init__
print p(1) #call __call__
print p(2)
7. 析构函数重载
class Life:
def __init__(self, name='name'):
print 'Hello', name
self.name = name
def __del__(self):
print 'Goodby', self.name
brain = Life('Brain') #call __init__
brain = 'loretta' # call __del__
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27