京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与金融融合 更好的为用户服务
随着大数据技术的不断发展,大数据在互联网金融领域的重要性也日益显现。积极发展大数据,推动大数据与金融的深度融合,这对更精准的预测用户行为、改进平台服务等方面都有着十分重要的作用。钱时代金服作为互联网与金融中介综合性服务平台,从互联网金融行业出发,注重风控管理,严格要求产品运作过程,并运用大数据技术,用高效的方法收集风控数据,并对数据进行深度分析,从而提升平台运营效率,增强自身竞争力。
说到互联网金融对大数据技术应用的时候,钱时代金服表示,互联网金融与传统金融相结合,向互联网海量用户提供服务,在注册、支付、投资、充值等方面无时无刻不在产生大量的数据,平台通过大数据技术对这些数据进行采集、整理、分析,得到有价值的规律和模型,以促进平台更好的运营和发展。
钱时代金服利用大数据解决了很多平台在实际运营过程中遇到的问题。首先,平台的技术团队根据平台运营数据建立用户分析系统、文件数据链接等功能,并以精准的数据分析作为基础为平台运营提供可靠的数据支持,并帮助平台建立相应的运营决策;其次,建立用户画像,为平台运营及推广提供精准的营销目标,降低平台的运营成本;同时,建立用户生命周期模型,实现对用户投资预测、用户分层、用户流失等预警功能,这样能够帮助平台更细致的了解用户行为,并做出有效改进。
说到用户画像的开展工作以及如何利用大数据完善风控体系,钱时代金服表示,平台投资用户画像建立的主要目的是为了还原投资用户的全貌,并以此为依据对平台运营的各个环节进行有针对性的改进,以实现优化用户在平台投资体验的目的。而对于风控体系,技术团队通过对用户的自然特征、社会特征、信用记录等进行整理分析,并以此制定相应的风控体系,以保证将平台运营的风险降到最低,从而有效保证投资者的利益不受损失。
钱时代金服作为互联网与金融中介综合性服务平台,拥有一定规模的投资用户,通过对这些用户的特征、投资行为进行分析,可以获得更加有效、可靠的数据规律,以便更好的为用户服务。未来,钱时代金服团队还会有很多的工作要做,在风控体系、数据分析等方面进行深度研发,并对现有的技术团队进行升级改造以支撑未来更大体量的数据需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27