
“量服”助残体现大数据之美
近日,家住四川省南充市嘉陵区火花街道任家桥社区一家三口都是残疾人的王建国一家吃上了自来水。而王建国一家吃水问题的解决,正是得益于2011年四川省全面推行的“量体裁衣”式服务(以下简称“量服”)。
“一人一策,建立数据库精准掌握残疾人需求”,这是“量服”扶残助残的精华所在,而其背后就是依托的互联网大数据。可以说,没有这一强大的互联网大数据作支撑,“量服”工作的速度和效率上不去不说,更重要的是,“精准掌握残疾人需求”就成了无本之木、无源之水。
在公众固有印象中,互联网大数据就是冰冷的数字信息,并没有什么温度可言,但事实并非如此,尤其是在读透“量服”扶残助残的做法后,更能感觉到在人为控制的互联大数据上,处处洋溢着人性化的温度,折射着关心关爱之美。
服务的“精准美”。这是“量服”的“最美”之处,当每位残疾人的基本情况和主要需求,被采集到数据库中后,他们的最需、最急、最盼便得到了保证。相关部门可以根据采集到的相关信息,对症下药、有针对性开展帮扶,让残疾人实现了与现实需求的直接对接,这无异于是他们的“左膀右臂”。
服务的“速度美”。过去残疾人要申请帮助帮扶,要经过很多程序、经历很长时间,原因在于帮扶资源不能及时对接到残疾人;现在好了,相关部门、帮扶人士通过大数据直通帮扶对象,既节省了时间,又缩短了服务对象的“期盼时间”。这无异于一次帮扶的“大提速”,让残疾人受益帮扶的效率大大提高。
服务的“质量美”。在大数据的支撑下,在提高服务速度、效率的同时,“量服”的质量是有充分保障的。残疾人对服务的需求其实是与自己的评判联系在一起的,通过及时沟通,可以充分让自己的需求得到各方面的保障。这在以往几乎是不可能实现的。由此可见,“量服”的服务质量,要比一般服务的质量要高。
服务的“人性美”。“量服”的人性美主要体现在有求必应、有问必答等方面,这有效弥补了残疾人因身体残缺而导致的需求等方面的不便,改变了一些孤困残疾人有困难时“叫天天不灵,叫地地不应”的尴尬局面。
其实,“量服”体现的“大数据之美”背后,是相关部门、爱心人士、社会各界对残疾人关心关爱体现出来的“大善之美”。且不论,“量服”具体实施上要靠具体的爱心人士等来实现,就相应的工作理念,工作思维的转变,就体现了社会的温度。“为什么一个普普通通的残疾人工作者和一个有精神障碍的残疾人有如此紧密的血肉联系?”主要因为“量服”模式建立了常态化的入户调研机制。相关人士的话道出了“量服”服务美的“天机”。
进一步讲,“量服”这一新模式,改变了服务残疾人的理念、方式、方法和工作作风。因而,处处呈现着“美感”也就不足为怪。期待“量服”扶残助残的模式,能在各地推广开来!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25