
全民健身及大数据的探索应用
说到全民健身,人们可能更多想到的是广播操、绕圈跑、太极拳、广场舞,但在体育产业蓬勃发展的今天,全民健身已经开始有了越来越多不同的玩法。“大数据”就是其中最为前沿的一种。
在互联网等科技飞速发展的今天,大数据的应用越来越受到重视,2015年,国务院印发了《促进大数据发展行动纲要》,系统部署大数据发展工作,具体到全民健身领域,《体育发展“十三五”规划》等重要文件也均提到要借助大数据的力量来实现各个体育领域更好的发展。
“大数据在全民健身领域至少可以应用到三大场景:一是政府层面,主要体现在智慧城市的智慧体育上,即利用互联网、云技术,通过管理场馆、赛事、培训等运动资源和对相应的大数据采集和分析,全面了解全民健身参与情况,基于数据有效地解决政府的投入和配置的效率问题,有利于政府公共服务采购、供给侧改革、提升人民群众生活幸福指数;二是在体育营销层面,可以通过技术手段获取大型场馆的观赛人群的数据,通过打通和匹配不同来源的数据,准确给出人群画像,做出精准营销,以捕捉体育带来的新的消费需求和潜在商机;三是在健康管理领域,通过对个体的运动健康的数据积累和状态追踪,提出运动、饮食、防病的个性化推荐,这对保险、食品、医疗、体育等行业具有深刻的影响。”新赛点体育董事长徐林洲说。
说到全民健身及大数据的探索应用,新赛点公司颇有发言权,这家拥有300多名员工的公司在2007年成立后,一直专注于在全民健身领域提供一站式体育运动服务。新赛点经过多年投资、自主研发了基于移动互联网的百动运动服务平台,整合一、二、三线城市2000家以上的场馆资源,为行业协会、大型企业像中国银行、广发银行、中信银行、中国移动等一百多家大型企业背后的数千万自有客户和企业员工提供多种运动健身服务,该公司去年在新三板挂牌后,在选择最新的战略突破点时,就是探索大数据如何结合全民健身中的各个场景,产生新的业务增值。
徐林洲介绍说,公司原有的业务方向是为大企业客户提供包括场馆预订、赛事组织、俱乐部管理的定制化解决方案,而现在,该公司已经尝试依托全民健身服务平台和场馆云管理系统,打造基于大数据和应用场景的标准化产品组合和细化的服务,更精确地满足个体的运动需求。
对于大数据在体育领域的作用,中国社会科学院社会科学文献出版社社长谢寿光有着更为宏观的解读。他说:“我们这个时代需要新型的体育制度,今天你想在任何一个方向有所发展,都需要利用大数据做深入的分析,需要对需求、对投资、对环境作精准的分析和判断。”
体育大数据的建立始于对运动人群的分类。新赛点将白领员工分为四类,分别是运动发烧友、运动爱好者、泛运动人群和非运动人群,针对每一类人群,新赛点都有相应的服务组合,涉及监测体质,开运动处方,指导运动选择,建立运动社群,运动健康数据追踪、装备、培训等等,通过运营,激发运动消费的转化率。而这些消费过程,帮助新赛点积累了第一手的不同人群运动消费的数据。
“新赛点不仅用大数据的观点来洞察直接服务的用户,”徐林洲说,“我们最近也开始与大数据公司合作,通过帮助体育主题公园和大型赛事场馆智能化,获取大数据,从另一个维度理解体育消费者。这些公园和场馆一般有着巨大的观众流量,而通过各种设备,可以采集到流量观众的数据,上传到云平台之后,与同样观众的其他线上和线下的大数据关联,就可得出用户的多维度的人口属性,线上行为,线下消费,体育偏好的洞察,通过APP,园区的互动屏,线下服务进行精准的体育营销,帮助公园,场馆的运营商把人群流量转为营销收入。”
对于大数据在体育场馆中应用,东城区体育局副局长马力也有着同样的感触。他说:“数字化是基础,网络化是条件,智能化是核心,这里面大数据将会发挥很大的作用。通过大数据,能够知道在场馆中人们运动的心率、运动的强度等等一系列情况,这都属于场馆智能化的一部分。”
其实大数据在全民健身中的作用不仅局限于场馆,维宁体育CEO纪宁曾提出未来的十类有发展前景的体育大数据公司类型,包括体育大数据广告公司、体育大数据电商平台公司、运动健康监测大数据公司等等。“大数据是一个金矿,是没有被开采的金矿,目前的中国体育产业大数据前景无限,空间广阔。”纪宁说。
大数据在各种运动、观赛场景的应用为全民健身乃至整个体育产业的各个领域提供了巨大的想象空间。“随着越来越多的人参与到运动健身中来,体育消费快速增长,消费场景日益多样化,同时移动互联网,人工智能,物联网的快速发展,加上全民健身已上升为国家战略,各级政府政策引导和资金支持,体育产业发展进入了爆发的黄金十年期,而大数据在全民体育中越来越广泛的应用,将成为加速群众体育发展的助推器。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15