
Python中列表和元组的使用方法和区别详解
这篇文章主要介绍了Python中列表和元组的使用方法和区别详解的相关资料,需要的朋友可以参考下
一、二者区别
列表:
1.可以增加列表内容 append
2.可以统计某个列表段在整个列表中出现的次数 count
3.可以插入一个字符串,并把整个字符串的每个字母拆分当作一个列表段追加到列表当中 extedn
4.可以查询某个列表段在整个列表的位置 index
5.可以在指定位置插入一个列表段 insert
6.可以删除列表的最后一个列表段 pop
7.可以删除指定列表中的某个列表段 remove
8.可以正向反向排序 reverse
9.可以按字母或数字排序 sort
10.定义列表时候使用中括号"[]"
注意:在列表当中,假如某两个列表段相同,不管是使用index还是remove都是统计的最靠前的列表段
元组:
1.可以统计某个元组段在整个元组中出现的次数 count
2.可以查询某个元组段在整个元组中的元组号 index
3.定义元组时候使用小括号"()"
二、二者的使用方法
列表
#定义列表
>>> name_list = ['sean','tom','jack','Angelia','Daisy','jack']
#查看定义的列表
>>> name_list
['sean', 'tom', 'jack', 'Angelia', 'Daisy', 'jack']
#增加david列表段
>>> name_list.append('david')
>>> name_list
['sean', 'tom', 'jack', 'Angelia', 'Daisy', 'jack', 'david']
#统计david列表段出现次数
>>> name_list.count('david')
1
>>> name_list.count('jack')
2
#使用extend向列表中增加列表段
>>> name_list.extend('Hello,My name is sean')
>>> name_list
['sean', 'tom', 'jack', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a', 'n']
#查看列表段所在的索引号,注意这里统计的jack为第一个jack id号
>>> name_list.index('jack')
2
>>> name_list.index('tom')
1
#向索引号为2的地方插入Adam
>>> name_list.insert(2,'Adam')
>>> name_list
['sean', 'tom', 'Adam', 'jack', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a', 'n']
#删除最后一个列表段
>>> name_list.pop()
'n'
>>> name_list
['sean', 'tom', 'Adam', 'jack', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a']
#删除指定列表段,注意这里删除的是第一个jack
>>> name_list.remove('jack')
>>> name_list
['sean', 'tom', 'Adam', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a']
#对整个列表进行倒序
>>> name_list.reverse()
>>> name_list
['a', 'e', 's', ' ', 's', 'i', ' ', 'e', 'm', 'a', 'n', ' ', 'y', 'M', ',', 'o', 'l', 'l', 'e', 'H', 'david', 'jack', 'Daisy', 'Angelia', 'Adam', 'tom', 'sean']
#对整个列表进行倒序
>>> name_list.reverse()
>>> name_list
['sean', 'tom', 'Adam', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a']
#对整个列表进行列表段的首字母进行排序
>>> name_list.sort()
>>> name_list
[' ', ' ', ' ', ',', 'Adam', 'Angelia', 'Daisy', 'H', 'M', 'a', 'a', 'david', 'e', 'e', 'e', 'i', 'jack', 'l', 'l', 'm', 'n', 'o', 's', 's', 'sean', 'tom', 'y']
>>>
元组
元组的元素是不可变的,元组的元素的元素是可变的
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18