
大数据赋能 迪信通开启智能生活新时代
伴随移动互联网的发展,不管是消费者还是企业厂商,无一不是在追求着“效率”与“精准”。因此,“互联网+”和“大数据”也便成为各行业大佬们有效占领市场的必杀技,手机通讯行业也是如此。
日前,由国内最大的手机零售连锁企业迪信通编制的《2017年前半年手机零售与消费者指数》正式发布。该数据报告详细描述了手机销售市场中的各项大数据趋势及变化,包括2017年上半年各品牌手机销量对比、畅销机型、换机市场变化、以及消费者端的行为调研分析等等。看似平常的数据背后,是迪信通对于行业敏锐的嗅觉。而对于手机通讯行业而言,这也是一次具有标志性意义的事件。
海量真实数据为市场分析服务
智慧零售时代,精准的营销与大数据分析,对于品牌商来说,至关重要。我们有理由相信未来社会的发展都将”以数据为中心”,通过对消费者行为习惯的记录产生庞大的数据,借以完成对市场趋势的把握和分析。手机通讯行业也不例外,同样需要大数据这把万能钥匙。
迪信通最大的优势则在于拥有海量数据(34.330,2.31,7.21%),且是真实的数据。迪信通在手机通讯领域深耕24年,积累了数亿的用户,这些用户活动形成巨大的多元化数据。在迪信通遍布全国超过3000多家门店中,用户留有真实姓名和相关身份信息,如果以手机号码作为身份识别,还能发现他们在迪信通商城购买其他电子产品时的身影。迪信通所有用户的身份信息均能实实在在的对应到真实社会中的每一个人,这在互联网数据中是非常难得的。
迪信通将用户年龄、性别、地域、偏好等一些看似毫无关联的数据,组成用户习惯和需求的完整画像。通过对这些数据的智慧互联和智能分析,不仅可以轻松完成单个用户的画像,而且能实现圈层群体的立体化画像,真正实现对每一个手机需求的消费者更具像、更精准的预测。可以说,与其他第三方数据相比,迪信通大数据更符合中国手机市场需求,更加具备自主性、有效性、以及系统共识性。
以消费者为中心的一站式服务
传统观点认为,手机市场主要在于买卖。但事实上,消费者对于手机的需求是一个链式需求,包括买手机、用手机、修手机、换手机的全周期。传统行业划分下分散、孤立的商业模式已经无法满足消费者的多样化需求,迪信通的发展正是由此展开。
迪信通基于“让通讯生活更简单”的意愿,来打破行业间的壁垒,为消费者提供一站式手机生活服务。通过结合大数据用户画像,根据不同消费者属性、不同阶段和不同需求对人群进行细分,从而精准地定制消费者专属的手机生活服务,为消费者提供从“购机”、“换机”、“提升生活品质”等不同层面的手机生活需求。也就是说,消费者可通过迪信通完成手机消费中的任意一环。凭借大数据的计算和分析,迪信通就像一个贴心的专属管家,将消费者所需的信息和服务精准地传递到消费者手中,且随着消费者习惯的变化而随时调整。
如今手机已经成为人们生活中不可或缺的伙伴和工具,而迪信通正是凭借其平台优势,围绕消费者使用手机的各个生活场景发力,触达并解决消费者各类手机相关需求,从而真正实现迪信通“让通讯生活更简单”的企业愿景。
新型业务展现企业更多价值
除了基于手机本身使用场景的服务外,近年来,迪信通还积极与各大品牌厂商合作,寻找新的业务互动合作模式,通过回应和满足消费者对手机使用的新需求,真正形成一个完整的“生活闭环”,为消费者提供多维度、多元化的手机生活服务。
日前,迪信通联合苹果、三星、华为、荣耀、OPPO、VIVO、摩托、金立、小米、酷派、联想、魅族、美图等诸多知名手机厂商推出新机租赁业务。该业务不仅能满足消费者在短期内更换新手机的需求,同时也能让消费者更加了解手机品牌、了解迪信通的服务,为企业吸引更多年轻、时尚的消费人群。随着时代的发展,从拥有到使用,消费者需求趋势的改变必将为全球手机消费带来巨大变革,而租机网络在中国迪信通正悄然发展,通过租机让中国消费者获得更好更优质的手机消费新趋势,同时也为迪信通积累更多真实可靠的数据来源。
当然,迪信通对于新型业务的探索还有很多,例如装修升级门店、打造极致化的手机与智能硬件体验场所D.Phone UP+体验店、下沉渠道发展迪信云聚、联合手机厂商开启二手良品销售等等,利用大数据打通购机、换机两大消费人群需求,通过多形态业务发展将潜在人群无限扩大,实现一个以消费者为中心的具有迪信通特色的服务体系。
基于大数据分析而来的迪信通手机销售指数正在深刻改变着手机使用的各个场景,不仅为迪信通赋予了新的平台价值,也为手机通讯行业的创新发展提供了一种新的可复制的新思路,一旦促成行业的裂变,这种创新能量将不可估量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29