
大数据支持反诈骗进入全民时代
近年来国家对电信网络诈骗的打击力度越来越大。尤其是2015年开始,公安部、工信部、最高法等23个部门和单位,联合建立组成打击治理电信网络新型违法犯罪工作部际联席会议制度,开启了联合防治新阶段。
2016年以腾讯为代表的互联网企业发起“守护者计划”,集产业之力、结合技术手段对电信诈骗进行预防和打击;2017年《网络安全法》等法律法规开始实施,从立法角度加大对个人信息保护力度,并对诈骗分子的惩治提供了依据。
8月4日,腾讯“守护者计划”发布了《2017年第二季度电信网络诈骗大数据报告》(下称《报告》),数据显示,今年二季度,电信网络诈骗造成经济损失近50亿元,其中单笔案件最高金额达700万元。
这些只是针对报案数据的统计,据调研,被骗之后64%的人选择隐忍,所以实际损失金额要高于上面的数字。一个季度的时间,诈骗电话拨打近3亿次,收到诈骗短信人数达671万人,在这个社会性“毒瘤”面前,每个人都不能置身事外,即使我们没有被骗,我们的亲人和朋友呢?
更值得注意的是,《报告》结合2017年上半年八大典型案例,分析了电信网络诈骗的新趋势:一是团队化,成员之间分工协作,职能涵盖开发制作、运营推广、诈骗实施等不同环节。二是技术化,黑客攻击、AI破解、游戏辅助工具病毒勒索等,诈骗分子的作案手段越来越高超。三是潮流化,微信公众号、网络直播、《王者荣耀》游戏都成为诈骗分子的作案领域。
相对于传统诈骗,新趋势下,作案隐蔽更强、破坏更大、破案更难,需要公安机关联合运营商、互联网公司等联合治理,更需要基于AI、云计算、大数据等先进技术进行分析和判断,再进行全网打击。
基于大数据的全民反诈骗时代到来
《报告》还显示,“在诈骗电话、短信双双减少的情况下,第二季度诈骗电话标记次数1940万次,环比增加19.9%。可见,用户防电信网络诈骗意识正逐步增强。”
个人标注诈骗电话的简单动作,就能够反诈骗?实际上,无论是诈骗电话、短信还是通过钓鱼网址、外挂软件等,只要电信诈骗分子实施诈骗行为,必然会留下作案和痕迹,而这些都将成为大数据的一部分,将成为他们被抓捕的线索和有利证据。
数据越多,大数据分析技术越强,对于电信诈骗的预防、发现和打击越有利。这不仅要求公安机关、运营商、银行等联合起来,将大数据集中,形成合力。更需要越来越多的人对诈骗电话、短信、网址进行标记,以及对一些诈骗行为进行反馈,甚至针对诈骗问题的咨询,都可以成为反诈骗的大数据。
腾讯手机管家等安全软件允许用户标记诈骗电话号码,用户标记后的恶意电话号码会汇集到腾讯安全云库。当其他用户接听被标记的诈骗电话时,腾讯手机管家会提醒“XXXXXXX诈骗电话,已被XX人标记”,帮助用户精准识别,以免上当受骗。据了解,腾讯安全云库每天对8000万电话号码进行识别,每天拦截3000万次欺诈骚扰电话、4000万垃圾信息,实现行业领先的98%的骚扰拦截率。
当每个人都参与到其中,每一次行动的数据都是亿级的,这些数据将发挥更多的价值,对于反诈骗将会更有效。每个人的力量是弱小的,但是在大数据技术的加持下,千万上亿的个人力量,将成为对犯罪分子最大的威慑。
联合打击电信网络诈骗模式解决了诸多大案要案,能够治标;全民防诈骗意识提升,每个人随手反诈骗,才能够治本。“你一个随手的举动,可能就会拯救到无数人群,包括你的家人、朋友。”此前在8月2日举办的“2017守护者计划”线下活动中,一些行业人士现场发出呼呼。无论是出于对社会的责任之意,还是出于对家人的守护之心,我们每个人都需要做一个行动派,共同反电信网络诈骗。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01