京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python爬取网站数据保存使用的方法
这篇文章主要介绍了使用Python从网上爬取特定属性数据保存的方法,其中解决了编码问题和如何使用正则匹配数据的方法,因为涉及到中文,所以必然地涉及到了编码的问题,这一次借这个机会算是彻底搞清楚了。
问题要从文字的编码讲起。原本的英文编码只有0~255,刚好是8位1个字节。为了表示各种不同的语言,自然要进行扩充。中文的话有GB系列。可能还听说过Unicode和UTF-8,那么,它们之间是什么关系呢?
Unicode是一种编码方案,又称万国码,可见其包含之广。但是具体存储到计算机上,并不用这种编码,可以说它起着一个中间人的作用。你可以再把Unicode编码(encode)为UTF-8,或者GB,再存储到计算机上。UTF-8或者GB也可以进行解码(decode)还原为Unicode。
在python中Unicode是一类对象,表现为以u打头的,比如u'中文',而string又是一类对象,是在具体编码方式下的实际存在计算机上的字符串。比如utf-8编码下的'中文'和gbk编码下的'中文',并不相同。可以看如下代码:
可以看到,其实存储在计算机中的只是这样的编码,而不是一个一个的汉字,在print的时候要知道当时是用的什么样的编码方式,才能正确的print出来。有一个说法提得很好,python中的Unicode才是真正的字符串,而string是字节串
文件编码
既然有不同的编码,那么如果在代码文件中直接写string的话,那么它到底是哪一种编码呢?这个就是由文件的编码所决定的。文件总是以一定的编码方式保存的。而python文件可以写上coding的声明语句,用来说明这个文件是用什么编码方式保存的。如果声明的编码方式和实际保存的编码方式不一致就会出现异常。可以见下面例子:
以utf-8保存的文件声明为gbk
提示错误 File "test.py", line 1 SyntaxError: Non-ASCII character '\xe6' in file test.py on line 1, but no encodi ng declared; see http://www.python.org/peps/pep-0263.html for details 改为
输出正常结果 u'\u6c49' '\xe6\xb1\x89' '\xba\xba' '\xe6\xb1\x89'
基本方法
其实用python爬取网页很简单,只有简单的几句话
这样就可以获得到页面的内容。接下来再用正则匹配去匹配所需要的内容就行了。
但是,真正要做起来,就会有各种各样的细节问题。
登录
这是一个需要登录认证的网站。也不太难,只要导入cookielib和urllib库就行。
这样就装载进一个cookie,用urlOpener去open登录以后就可以记住信息。
断线重连
如果只是做到上面的程度,不对open进行包装的话,只要网络状况有些起伏,就直接抛出异常,退出整个程序,是个很不好的程序。这个时候,只要对异常进行处理,多试几次就行了:
正则匹配
其实正则匹配并不算是一个特别好的方法,因为它的容错性很不好,网页要完全统一。如果有稍微的不统一,就会失败。后来看到说有根据xpath来进行选取的,下次可以尝试一下。
写正则其实是有一定技巧的:
非贪婪匹配。比如这样一个标签:<span
class='a'>hello</span>,要取出a来,如果写成这样的表达式,就不行了:<span
class=.*>hello</span>。因为*进行了贪婪匹配。这是要用.?:<span
class=.?>hello</span>。
跨行匹配。实现跨行有一种思路是运用DOTALL标志位,这样.就会匹配到换行。但是这样一来,整个匹配过程就会变得很慢。本来的匹配是以行为单位的。整个过程最多就是O(nc2),n是行数,c是平均列数。现在极有可能变为O((nc)2)。我的实现方案是运用\n来匹配换行,这样可以明确指出匹配最多跨跃多少行。比如:abc\s*\n\s*def,就指出查找的是隔一行的。(.\n)?就可以指定是匹配尽可能少的行。
这里其实还要注意一个点。有的行末是带有\r的。也就是说一行是以\r\n结尾的。当初不知道这一点,正则就调试了很久。现在直接用\s,表示行末空格和\r。
无捕获分组。为了不对捕获的分组造成影响,上面的(.\n)可以改为(?:.\n),这样捕获分组时,就会忽略它。
单括号要进行转义。因为单括号在正则里是用来表示分组的,所以为了匹配单括号就进行转义。正则字符串最好用的是带有r前缀的字符串,如果不是的话,则要对\再进行转义。
快速正则。写了那么多模式,也总结出一规律出来。先把要匹配的字符相关的段落拿出来。要匹配的东西用(.?)代替。把换行\n替换为字符串\s\n\s*,再去掉行首行末的空格。整个过程在vim中可以很快就写好。
Excel操作
这次的数据是放进Excel的。到后面才意识到如果放进数据库的话,可能就没有那么多事了。但是已经写到一半,难以回头了。
搜索Excel,可以得出几个方案来,一个是用xlrt/xlwt库,这个不管电脑上是否安装了Excel,都可以运行,但只能是xls格式的。还有一个是直接包装了com,需要电脑上安装了软件才行。我采用的是前一种。
基本的读写没有问题。但是数据量一大起来,就有问题了。
内存不够。程序一跑起来,内存占用就一点一点往上涨。后面再查了一下,知道要用flush_row_data。但是还是会出错。一看内存占用,没有什么问题,一直很平稳。但最后还是会出现memory
error。这真是见鬼了。又是反复地查,
反复地运行。一点结果都没有。要命的是bug只在数据量大起来才出现,而等数据量大起来往往要好几个小时,这debug的成本实在是太高了。一个偶然的机会,突然发现内存占用,虽然总体平稳,但是会规律性的出现小的高涨,而这规律性,会不会和flush_row_data,有关。一直疑惑的是data被flush到了哪里。原来xlwt的作法是很蛋疼的作法。把数据存在内存里,或者flush到一个temp,到save的时候,再一次性写入。而问题正出在这一次性写入,内存猛涨。那我要flush_row_data何用?为什么不一开始就flush进要写入的地方。
行数限制。这个是xls格式本身决定的,最多行数只能是65536。而且数据一大,文件打开也不方便。
结合以上两点,最终采取了这么一个策略,如果行数是1000的倍数,进行一次flush,如果行数超过65536,新开一个sheet,如果超过3个sheet,则新建一个文件。为了方便,把xlwt包装了一下
转换网页特殊字符
由于网页也有自己独特的转义字符,在进行正则匹配的时候就有些麻烦。在官方文档中查到一个用字典替换的方案,私以为不错,拿来做了一些扩充。其中有一些是为保持正则的正确性。
结
得出的经验差不多就是这些了。不过最后写出来的程序自已也不忍再看。风格很不好。一开始想着先写着试试。然后试着试着就不想改了。
最终的程序要跑很久,其中网络通信时间占了大部分。是不是可以考虑用多线程重构一下?想想,还是就这样吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16