
大数据时代的企业管理挑战
互联网时代,创新使得财富积累的速度前所未有的快,贫富不均也前所未有地分化。这个时代,世界的竞争变成人与人的竞争,人与人的竞争就是智慧的竞争,就是人的创新能力的竞争。如何才能提高人的竞争力,是管理科学面临的新课题,是管理者必须要思考的难题。
笔者认为,基于互联网大数据发展产生的以下管理挑战,值得关注:
第一个挑战是大数据对人性假设的挑战。
管理学自诞生开始,就以人为对象,以人性假设为前提不断演化出各种理论。第一个提出科学管理理论的泰勒假设人是“经济人”,后来梅奥假设人是“社会人”,西蒙则构造了“决策人假设”。自西蒙之后,又有了各种各样新的理论:战略管理、营销管理、人力资源管理等,基本都是以西蒙的假设为预设。
社交媒体的诞生,意味着人不再是抽象的假设,而是一种基于大数据的画像。可以认为,大数据令管理科学真正进入到了可量化的科学发展阶段,通过大数据对人进行定量化描述,必然会引发管理科学的飞跃。
第二个挑战是数字化虚拟世界里,如何进行管理实践。
由于量子力学的发明,人类进入了电子时代;计算机的发明,让人类又进入了数据时代。通过计算,我们可以用拓扑的方式去重构现实世界,这种方法可以使人在现实与虚拟中间通过一个旋转门,进而优化现实世界。比如交通中的一些难以解决的问题,通过大数据不断优化方案,反复再现结果,最终解决现实中的难题。
最近热炒的人工智能(AI),预示着人类新的文明历程。阿尔法狗打败柯洁后,聂卫平评价说人类的围棋选手最高是9段,阿尔法狗是20段。阿尔法狗强大的地方是它的计算速度比人反应快。但今天的AI并没有像很多媒体所描述的那样功能强大,它只是能在一个特定的、复杂的、可重复的工作环境里比人做得更好。
计算机的算法不是今天才有的,上世纪90年代就已经发明了,为什么那个时候计算机没有自我学习能力呢?因为在当时的条件下,计算机的速度还不够快,数据量也不够多。计算机高速运转之后,所生成的数据量是前所未有的,甚至每天产生的数据量都是以前的总和。大数据时代要求计算能力越来越快,存储能力越来越强。今天我们任何一台智能手机都比当年的英特尔“奔腾”速度快上千倍。我们现在使用的神经网络计算方式,也更具有自学习的能力。
在这样一个自学习、数字化虚拟世界里,管理实践者该如何去做管理?
第三个挑战是大数据对营销学的挑战。
营销学是管理学的一个重要分支,包括四个基本策略的组合,即大家经常说的产品、价格、渠道、促销4P理论,但在今天以客户为中心的、定制化的生产方式下,4P理论还有效吗?
例如小米手机,它通过互联网征求客户意见——客户需要一个什么样的手机,什么样的外观,什么样的性能,什么样的价钱,用什么样渠道传递给客户?在这样的环境下,4P理论是否需要进行修正?
再例如医药领域现在有精准医疗、靶向治疗。每个人得感冒的时候,感染的细菌或病毒都不是完全一样的,过去使用广谱抗生素,抗菌谱比较宽。现在出现的靶向药,通过培养患者感染的细菌或病毒,反向制出一种新的抗生素,非常精准地进行针对性的治疗。
今天,一位肿瘤患者会请老医生诊治,请大专家会诊,但今后,阿尔法狗将会取代老医生,因为再老的医生最多就是“9段”,但是阿尔法狗可以是“20段”,这就是大数据在治疗中的优势。很多肿瘤的治疗方法是化疗和放疗,化放疗的方案设计是和医生的判断有很大关系的,阿尔法狗的方案优化能力比人类更强。
当然,我们现在对阿尔法狗不放心,就像我们一开始不信任电子账单一样,在手工账单和电子账单并行一段时间后,大家不再怀疑计算机的计算能力。可以想象一下,如果从诊断到治疗都是由大数据来完成的时候,它的运算能力一定会极大提高医疗的水平。将来,我们在社区或者任何地方,都可以享受到顶级的治疗。届时,传统的营销学将面临巨大挑战。
第四个挑战是工业4.0生产要素社会化后,管理模型该如何变化。
工业4.0,我理解它包含三件事:智能工厂、智能生产、智能物流。传统的数据管理,数据还是要落地的,未来数据是不能够落地的,直接的、无缝连接的,整个车间管理是自动化的,企业管理是网络化的,生产要素的组合是社会化的。
为什么会出现工业4.0?这其实是工业自身发展变化后寻找的出路。传统的制造业方式、营销方式、研发系统,显然不再适合。生产成本也不仅仅考虑材料、科研、制造成本、资金成本这些数据,而是要和社会的应用环境相结合,即生产要素的社会化。
生产要素社会化之后,组织生产管理必然是一个大的网络环节,一定是用计算机的方式,用互联网的方式来进行传输,一直到最终的加工设备上全部实现智能化,这是未来制造业的发展方向。我们的管理模型随之该如何变化?
第五个挑战是大数据时代新的安全观。
早些年有一本书《现代战争》,它提出未来的战争不是无限的,而是有限度的战争。现在,社会安全的重点是反恐。这是一种新的安全观,从战争模式、国防模式,进入到民生和社会的模式上来。现在再发动战争的话,不能靠传统的武器去打了,而是要依靠网络安全、信息安全。
在安全领域里,视频监控产业发展非常快。新加坡的车辆有电子车牌,大数据实时监控,一旦人员密集,就会形成电子围栏,车辆再进入就会自动收费。甚至边境线也可以使用电子围栏技术,代替界碑。正在发展中的人脸识别技术,今后也可以用于安全技术,这些都是新的安全防范措施。
随之而来的整个社会的公共管理和相应的产业、企业管理将会进入到一个新的课题,这些都是大数据时代所带来的变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18