
如何将大数据利用好
到如今,多数创业者都理解了大数据的概念。这个庞大的数据集包含了企业每日业务流程所催生的数字——销售统计数据、电子邮件开启率、网站点阅率等等,帮你洞悉客户行为和客户欲望。
数据和分析数据所需的工具都唾手可得,但这种便利也是一柄双刃剑:若太过依赖大数据,我们也许会忽略强大(而且通常十分准确)的直觉,因为它根本无法量化。针对这个问题,来自青年企业家理事会(YEC)的12位创业者提供了如下洞见,告诉我们如何利用大数据,而不盲从数字,不至于所有商业决策都任凭大数据的摆布。
让大数据充当向导,而非指挥官
大数据固然不错,但在为品牌做决策时,我们不能唯大数据马首是瞻。肯定有一种综合的解决方案,能将大数据和“直觉判断”有效结合起来。我得以在数据的指引下,为品牌吸引到新的客户,但我和读者联络、互动的方式是由我自己裁量的,不会受制于大数据的摆布。
为数据负责,但也要切合实际
人孰无过,但数据有时也能误人。这种现实主义融入了我所有的决策之中。这样一来,我在对数据负责的同时,也能对数据的真正含义保持适当的怀疑态度。
——曼佩里·辛格(Manpreet Singh),TalkLoCAl
记住,数据是投资回报(ROI)中的一部分
大数据有它的一席之地,它简化了几十年来的记录与研究。但它并非万无一失,在观察数据趋势与预测时,不要忽略其他能影响结果、干扰数据流的众多因素。大数据仅仅是整体ROI的一小部分。
——马修·卡帕拉(MATthew Capala),Search Decoder
理解企业的数据需求
这取决于你的业务类型。你要考虑你的大数据是否是轻易获得的;其测量是准确的,还是为人类失误留出了余地;你调查的是观点、事实还是数据。不要还没考虑这些问题,就过度依赖于数据,把直觉束之高阁——这是你的业务,最清楚它的人应该是你。
——凯文·康纳(Kevin Conner),Vast BridGEs
寻找模式和趋势
用它迅速查阅大量数据,以揭示隐藏的规律、未知的联系、市场趋势、顾客偏好等等有用的商业信息。这样一来,我们就能预计客户需求或欲望,由此改进服务,或是在问题出现之前,就将其查明并削弱,由此改进管理决策。
——路易吉·维维格(Luigi Wewege),Vivier Group
清楚数据的局限
我们想方设法地让数据指引我们,而不是由我们去指引数据,因为在估值这样一个领域,数据和直觉之间的互动并不十分理想。我们不断加入新的数据可视图与解释,树立基准,并在数据表现出不足时意识到问题。
——托马斯·斯梅尔(Thomas Smale),FE International
树立基准
在推行了“数据为先”的策略之后,我们的关键绩效指标(KPI)就开始稳步提升,成效喜人。我们也不会盲目地信任大数据。我们将先前的销售数据作为评估的依据。我们发现有一点十分重要,那就是知道模型的预测能力的局限。
——伊斯梅尔·威克斯(Ismael Wrixen),FE International
着眼于背后的细节
要看到大数据背后的细节。无论做什么决定,都要基于这些细节来做。
——戴西·景(Daisy Jing),BAnish
在定性与定量之间找到平衡点
我们总会将定量数据洞察(衡量指标、调查、服务器日志数据)与定性反馈(调查、采访、用户研究等)结合起来。这使我们得出更加全面的观点、做出最为明智的决定。数据也有误导决策的时候,因为它们只是其中一个方面。
——阿德林·周(Adelyn Zhou),TOPBOTS
专注于收购优质数据
数据也有优劣之分。兜售原始数据、分析工具和仪表盘工具——旨在将机器学习与人工智能相结合——的公司有的是。重点之一是收购优质、可靠的数据;这样,之后的决策就会水到渠成。
——莱恩·布拉德利(Ryan Bradley),KOester &; Bradley, LLP
梳理数据,找出真正的潜在客户
凭借大数据,我的公司和销售队伍得以了解并预测人们的行为,比如人们在何处网购、购置何物;以及预测未来几个月内,他们会搬到何处。由此,我的销售团队得以找出潜在顾客——真正有望购买产品或服务的顾客,以及向他们推销的最佳时机。
——约翰·丹尼尔(John Daniel),Innovator John
让数据证明或证伪你的直觉
直觉告诉我们,登录页的某些设计看着不错,效果应该很好。但只有等数据大量涌入之后,我们才能看到实际的效果,以及这些设计的强项和弱项。要判断这些猜测是否准确,数字是最有发言权的。在数据的引导下,我们将就内容的去留作出合适的决策。
——杰森·阿波尔鲍姆(Jason APPlebaum),EagerMedia
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18