
如何将大数据利用好
到如今,多数创业者都理解了大数据的概念。这个庞大的数据集包含了企业每日业务流程所催生的数字——销售统计数据、电子邮件开启率、网站点阅率等等,帮你洞悉客户行为和客户欲望。
数据和分析数据所需的工具都唾手可得,但这种便利也是一柄双刃剑:若太过依赖大数据,我们也许会忽略强大(而且通常十分准确)的直觉,因为它根本无法量化。针对这个问题,来自青年企业家理事会(YEC)的12位创业者提供了如下洞见,告诉我们如何利用大数据,而不盲从数字,不至于所有商业决策都任凭大数据的摆布。
让大数据充当向导,而非指挥官
大数据固然不错,但在为品牌做决策时,我们不能唯大数据马首是瞻。肯定有一种综合的解决方案,能将大数据和“直觉判断”有效结合起来。我得以在数据的指引下,为品牌吸引到新的客户,但我和读者联络、互动的方式是由我自己裁量的,不会受制于大数据的摆布。
为数据负责,但也要切合实际
人孰无过,但数据有时也能误人。这种现实主义融入了我所有的决策之中。这样一来,我在对数据负责的同时,也能对数据的真正含义保持适当的怀疑态度。
——曼佩里·辛格(Manpreet Singh),TalkLoCAl
记住,数据是投资回报(ROI)中的一部分
大数据有它的一席之地,它简化了几十年来的记录与研究。但它并非万无一失,在观察数据趋势与预测时,不要忽略其他能影响结果、干扰数据流的众多因素。大数据仅仅是整体ROI的一小部分。
——马修·卡帕拉(MATthew Capala),Search Decoder
理解企业的数据需求
这取决于你的业务类型。你要考虑你的大数据是否是轻易获得的;其测量是准确的,还是为人类失误留出了余地;你调查的是观点、事实还是数据。不要还没考虑这些问题,就过度依赖于数据,把直觉束之高阁——这是你的业务,最清楚它的人应该是你。
——凯文·康纳(Kevin Conner),Vast BridGEs
寻找模式和趋势
用它迅速查阅大量数据,以揭示隐藏的规律、未知的联系、市场趋势、顾客偏好等等有用的商业信息。这样一来,我们就能预计客户需求或欲望,由此改进服务,或是在问题出现之前,就将其查明并削弱,由此改进管理决策。
——路易吉·维维格(Luigi Wewege),Vivier Group
清楚数据的局限
我们想方设法地让数据指引我们,而不是由我们去指引数据,因为在估值这样一个领域,数据和直觉之间的互动并不十分理想。我们不断加入新的数据可视图与解释,树立基准,并在数据表现出不足时意识到问题。
——托马斯·斯梅尔(Thomas Smale),FE International
树立基准
在推行了“数据为先”的策略之后,我们的关键绩效指标(KPI)就开始稳步提升,成效喜人。我们也不会盲目地信任大数据。我们将先前的销售数据作为评估的依据。我们发现有一点十分重要,那就是知道模型的预测能力的局限。
——伊斯梅尔·威克斯(Ismael Wrixen),FE International
着眼于背后的细节
要看到大数据背后的细节。无论做什么决定,都要基于这些细节来做。
——戴西·景(Daisy Jing),BAnish
在定性与定量之间找到平衡点
我们总会将定量数据洞察(衡量指标、调查、服务器日志数据)与定性反馈(调查、采访、用户研究等)结合起来。这使我们得出更加全面的观点、做出最为明智的决定。数据也有误导决策的时候,因为它们只是其中一个方面。
——阿德林·周(Adelyn Zhou),TOPBOTS
专注于收购优质数据
数据也有优劣之分。兜售原始数据、分析工具和仪表盘工具——旨在将机器学习与人工智能相结合——的公司有的是。重点之一是收购优质、可靠的数据;这样,之后的决策就会水到渠成。
——莱恩·布拉德利(Ryan Bradley),KOester &; Bradley, LLP
梳理数据,找出真正的潜在客户
凭借大数据,我的公司和销售队伍得以了解并预测人们的行为,比如人们在何处网购、购置何物;以及预测未来几个月内,他们会搬到何处。由此,我的销售团队得以找出潜在顾客——真正有望购买产品或服务的顾客,以及向他们推销的最佳时机。
——约翰·丹尼尔(John Daniel),Innovator John
让数据证明或证伪你的直觉
直觉告诉我们,登录页的某些设计看着不错,效果应该很好。但只有等数据大量涌入之后,我们才能看到实际的效果,以及这些设计的强项和弱项。要判断这些猜测是否准确,数字是最有发言权的。在数据的引导下,我们将就内容的去留作出合适的决策。
——杰森·阿波尔鲍姆(Jason APPlebaum),EagerMedia
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15