
使用大数据能源情报创建预测性维护计划
通常情况下会预算紧缩会导致设备管理者推迟维护项目的进行,并认为这是不必要的。然而,据FacilitiesNet的调研报告显示,“一般而言,一项长期持续进行设备延期维护的企业管理政策可能会导致更高的成本,资产运行失败。甚至在某些情况下,会对整个企业设备运行安全、健康和环境的造成重大影响。”
降低成本的同时改善并提高设备的维修保养
然而,事实上,企业要想从设备的维护方面节省资金,并不需要以资产设备故障或以牺牲企业环境成本为代价。其实,企业可以采取一种方法来帮助他们显著地降低维护费用,同时确保设备和机械更高的工作效率。
当我们充分借助大数据分析,并将其应用到相关设施的能源消耗方面时,我们就能够是在这一在几年前是不可能的实现的目标了:
1、我们从资源密集型的预防性维护转型到了精简的预测性维护
2、我们能够更快、更好的做出决策,其能够带来运作效率和整体设备效能的提升
3、我们显著地降低了能耗(节约成本)
数据支持的预测维护
当涉及到机械和设备时,基本上有三种类型的维护计划:纠正、预防和预测。纠正性维护是“等到设备坏了”才纠正的方法,这种“计划并非计划”。不幸的是,这种结构(或缺乏结构)在许多设施中往往最为被经常性的采用。据MA CMMS的调研报告称,“依靠纠正性维护就像是盲目飞行,然而,这种纠正性维护仍然是北美大部分企业维护工作的主要方式。平均而言,大约55%的维修活动都是对设施实施纠正性维护。”
随着相关基础设施的进步,同时企业也变得更具组织和预算意识,他们通常会转变为采取预防性维护计划。这些方法是基于时间或机器的运行时间,并提供相应的设计程序来检测设备,排除或减轻一个系统(或其组件)的降解过程。一个有效的预防性维护计划有助于帮助企业实现高达12%至18%的成本节省。
而当一款设备需要提升效率,既在实现节约成本的同时仍然保持可持续的最佳实践,那么其就需要转移到采用预测性维护,其已经通过预防性维护的方法实现了约12%的成本节省。而进一步通过跟踪和监控设备的运行状况和机器的能量分布情况,我们可以使用聚合能量数据来进一步预测设备故障,进而针对只需要服务的设备实施维修。
有了预测性的维护,企业对即将发生的设备故障保持警觉。通过消除不必要的设备故障,同时对不需要服务的设备进行预防性维护,减少维修费用,减少资源密集型的停机时间。
决策和运营效率
跟踪设备能源消耗水平的系统,使得许多运营效率得以超越预测的维护。在The North Face公司的一个能源管理的研究案例中,该服装零售商在四个位置安装了一个电路级能源管理解决方案。其在每家实体店的HVAC空调和照明组件的输出电线上安装了无线自供电的传感器。
其结果是相当惊人的:
他们发现了一款不能正常工作的AC交流电风扇系统。通过早期的发现,店铺管理实现了69420千瓦时/年(约10500美元左右)的成本节约,并避免了设备故障。
在另一个位置的HVAC空调系统操作不正确,而空气处理程序超过了循环。而通过早期的检测,该实体店得以能够节省16016千瓦。
通过在旧金山进行实时监控,管理人员在母亲节繁忙的促销当日收到了店内的监控摄像头掉了的警报。
一家实体店改变了非工作时间的照明计划,并实现了每年10%的节能效果。
其他公司是以无监控的BMS重写(Overrides)的形式发现运营效率低下的,发现未知的异常,如设备闲置、企业文化中的行为变化。此外,与正在进行的调试和基准的位置的差距会使得成本浪费和其他差异很容易被注意到和纠正。
减少能源消耗,实现可持续发展
从设备和系统中进行大数据的收集,然后对其进行汇总,以揭示相应的趋势,所需配置文件,效率低下的基准和发出维护警报,有一个值得欢迎的副作用:节省能源和成本,实现可持续性发展。
当异常状况被跟踪到,并预测到需要相关的维护服务后,运营效率得以修正,企业进而可以优化能源的利用,提高产量和改善相关工作流程。从而大大节省了维修和相关项目的成本。
能源系统中的大数据
以数据驱动的方法对于许多系统而言都是革命性的。从流媒体音乐服务和卫星导航系统,计步器,卡路里计数器,乃至人体心脏速率监测器,我们都已然受益于庞大的数据集被处理。而在能源系统,大数据则能够使我们更好的理解和优化设备,从而带来能源消费成本降低,使设备、系统、设施和企业进入绿色运营的消费模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01