
【SQL揭秘】有多少种数据库,就有多少类CTE
Common Table Expression
Common table expression简称CTE,由SQL:1999标准引入,可以认为是在单个 SELECT、INSERT、UPDATE、DELETE 或 CREATE VIEW 语句的执行范围内定义的临时结果集。CTE 与派生表类似,具体表现在不存储为对象,并且只在查询期间有效。与派生表的不同之处在于,CTE 可自引用,还可在同一查询中引用多次。
目前支持CTE的数据库有Teradata, DB2, Firebird, Microsoft SQL Server, Oracle (with recursion since 11g release 2), PostgreSQL (since 8.4), MariaDB (since 10.2), SQLite (since 3.8.3), HyperSQL and H2 (experimental), MySQL8.0.
CTE的语法如下:
1、Non-recursive CTEs
2、Recursive CTEs
CTE的使用
CTE使语句更加简洁
例如以下两个语句表达的是同一语义,使用CTE比未使用CTE的嵌套查询更简洁明了。
1) 使用嵌套子查询
2) 使用CTE
CTE 可以进行树形查询
初始化这颗树
1) 层序遍历
2) 深度优先遍历
Oracle
Oracle从9.2才开始支持CTE, 但只支持non-recursive with, 直到Oracle 11.2才完全支持CTE。但oracle 之前就支持connect by 的树形查询,recursive with 语句可以与connect by语句相互转化。 一些相互转化案例可以参考这里.
Oracle recursive with 语句不需要指定recursive关键字,可以自动识别是否recursive.Oracle 还支持CTE相关的hint,
“MATERIALIZE”告诉优化器产生一个全局的临时表保存结果,多次引用CTE时直接访问临时表即可。而”INLINE”则表示每次需要解析查询CTE。
PostgreSQL
PostgreSQL从8.4开始支持CTE,PostgreSQL还扩展了CTE的功能, CTE的query中支持DML语句,例如
MariaDB
MariaDB从10.2开始支持CTE。10.2.1 支持non-recursive CTE, 10.2.2开始支持recursive CTE。 目前的GA的版本是10.1.
MySQL
MySQL从8.0开始支持完整的CTE。MySQL8.0还在development
阶段,RC都没有,GA还需时日。
AliSQL
AliSQL基于mariadb10.2, port了no-recursive CTE的实现,此功能近期会上线。
以下从源码主要相关函数简要介绍其实现,
//解析识别with table引用
find_table_def_in_with_clauses
//检查依赖关系,比如不能重复定义with table名字
With_clause::check_dependencies
// 为每个引用clone一份定义
With_element::clone_parsed_spec
//替换with table指定的列名
With_element::rename_columns_of_derived_unit
此实现对于多次引用CTE,CTE会解析多次,因此此版本CTE有简化SQL的作用,但效率上没有效提高。
select count(*) from t1 where c2 !='z';
+----------+
| count(*) |
+----------+
| 65536 |
+----------+
1 row in set (0.25 sec)
//从执行时间来看是进行了3次全表扫描
with t as (select count(*) from t1 where c2 !='z')
select * from t union select * from t union select * from t;
+----------+
| count(*) |
+----------+
| 65536 |
+----------+
1 row in set (0.59 sec)
select count(*) from t1 where c2 !='z'
union
select count(*) from t1 where c2 !='z'
union
select count(*) from t1 where c2 !='z';
+----------+
| count(*) |
+----------+
| 65536 |
+----------+
1 row in set (0.57 sec)
![]()
explain select count(*) from t1 where c2 !='z'
union
select count(*) from t1 where c2 !='z'
union
select count(*) from t1 where c2 !='z';
以下是MySQL8.0 只扫描一次的执行计划
以下是PostgreSQL9.4 只扫描一次的执行计划
AliSQL还有待改进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11