
广义线性模型中的Gauss Seidel 迭代算法实现
数值模拟的算法迭代公式推导
R代码实现
根据以上公式,代入迭代步骤,即可实现算法。
##------数据模拟--------
library(MASS)
##mvrnorm()
##定义一个产生多元正态分布的随机向量协方差矩阵
Simu_Multi_Norm<-function(x_len, sd = 1, pho = 0.5){
#初始化协方差矩阵
V <- matrix(data = NA, nrow = x_len, ncol = x_len)
#mean及sd分别为随机向量x的均值和方差
#对协方差矩阵进行赋值pho(i,j) = pho^|i-j|
for(i in 1:x_len){ ##遍历每一行
for(j in 1:x_len){ ##遍历每一列
V[i,j] <- pho^abs(i-j)
}
}
V<-(sd^2) * V
return(V)
}
##产生模拟数值自变量X
set.seed(123)
X<-mvrnorm(n = 200, mu = rep(0,10), Simu_Multi_Norm(x_len = 10,sd = 1, pho = 0.5))
##产生模拟数值:响应变量y
beta<-c(1,2,0,0,3,0,0,0,-2,0)
#alpha<-0
#prob<-exp(alpha + X %*% beta)/(1+exp(alpha + X %*% beta))
prob<-exp( X %*% beta)/(1+exp( X %*% beta))
y<-rbinom(n = 200, size = 1,p = prob)
##产生model matrix
mydata<-data.frame(X = X, y = y)
#X<-model.matrix(y~., data = mydata)
##包含截矩项的系数
#b_real<-c(alpha,beta)
b_real<-beta
#define the log-likelihood function
loglikelihood<-function(X, y, b){
linear_comb<-as.vector(X %*% b)
ll<-sum(y*linear_comb) + sum(log(1/(1+exp(linear_comb))))
return (ll)
}
##初始化系数
b0<-rep(0,length(b_real))
#b0<- b_real+rnorm(length(b_real), mean = 0, sd = 0.1)
##b1用于记录更新系数
b1<-b0
##b.best用于存放历史最大似然值对应系数
b.best<-b0
# the initial value of loglikelihood
ll.old<-loglikelihood(X = X,y = y, b = b0)
# initialize the difference between the two steps of theta
diff<-1
#record the number of iterations
iter<-0
#set the threshold to stop iterations
epsi<-1e-10
#the maximum iterations
max_iter<-10000
#初始化一个列表用于存放每一次迭代的系数结果
b_history<-list(data.frame(b0))
#初始化列表用于存放似然值
ll_list<-list(ll.old)
#-------Gauss-Seidel 迭代-------
while(diff > epsi & iter < max_iter){
for(j in 1:length(b_real)){
#对j循环,对每个系数最优化
#线性部分
linear_comb<-as.vector(X %*% b0)
#分子
nominator<-sum(y*X[,j] - X[,j] * exp(linear_comb)/(1+exp(linear_comb)))
#分母,即二阶导部分
denominator<- -sum(X[,j]^2 * exp(linear_comb)/(1+exp(linear_comb))^2)
#
b0[j]<-b0[j] - nominator/denominator
#更新似然值
ll.new<- loglikelihood(X = X, y = y, b = b0)
# #若似然值有所增加,则将当前系数保存
if(ll.new > ll.old){
#更新系数
b.best[j]<-b0[j]
}
#求差异
diff<- abs((ll.new - ll.old)/ll.old)
ll.old <- ll.new
iter<- iter+1
b_history[[iter]]<-data.frame(b0)
ll_list[[iter]]<-ll.old
##当达到停止条件时,跳出循环
if(diff < epsi){
break
}
}
}
b_hist<-do.call(rbind,b_history)
#b_hist
ll_hist<-do.call(rbind,ll_list)
#ll_hist
#
iter
##
ll.best<-max(ll_hist)
ll.best
##
b.best
##---------glm()验证-------
my_glm<-glm(y~0 + X.1 + X.2 + X.3+ X.4+ X.5+ X.6+ X.7+ X.8+ X.9+ X.10,
data = mydata,family = binomial(link = "logit"))
summary(my_glm)
coeff_glm<-my_glm$coefficients
cbind(coeff_glm,b.best,b_real)
迭代结果如下:
迭代206步收敛,系数结果非常接近R内部函数glm()运行的结果,甚至稍好于这一结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11