京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R中的正则表达式及字符处理函数总结
我们日常生活中接触到的大部分数据都是以文本的形式存在。如何高效地处理文本数据,将看似杂乱无章的数据整理成可以进行统计分析的规则数据,是『数据玩家』必备的一项重要技能。
今天,我们要学习的『正则表达式』和『字符处理函数』将助你成为点石成金的数据魔法师。
在进行爬虫任务的时候,部分情况下,我们可以使用Xpath来提取我们需要的网页信息。但是,当我们需要的数据以一定的规则隐藏在一段文字中时,就不可避免地要使用到正则表达式。
正则表达式是对字符串类型数据进行匹配判断,提取等操作的一套逻辑公式。
处理字符串类型数据方面,高效的工具有Perl和Python。如果我们只是偶尔接触文本处理任务,则学习Perl无疑成本太高;如果常用Python,则可以利用成熟的正则表达式模块:re库;如果常用R,则使用Hadley大神开发的stringr包则已经能够游刃有余。
下面,我们先简要介绍重要并通用的正则表达式规则。接着,总结一下stringr包中重要的字符处理函数。
如果有时间,我将后续补充一个综合的使用案例。
元字符
正则表达式中,有12个字符被保留用作特殊用途。他们分别是:
它们的作用如下:
[ ]:括号内的任意字符将被匹配;
\:具有两个作用:
1.对元字符进行转义
2.一些以\开头的特殊序列表达了一些字符串组
^:匹配字符串的开始.将^置于character class的首位表达的意思是取反义。如[^5]表示匹配除了”5”以外的任何字符。
$:匹配字符串的结束。但将它置于character class内则消除了它的特殊含义。如[akm$]将匹配’a’,’k’,’m’或者’$’.
.:匹配除换行符以外的任意字符。
|:或者
?:前面的字符(组)最多被匹配一次
*:前面的字符(组)将被匹配零次或多次
+:前面的字符(组)将被匹配一次或多次
( ):表示一个字符组,括号内的字符串将作为一个整体被匹配。
重复
转义
如果我们想查找元字符本身,如”?”和”*“,我们需要提前告诉编译系统,取消这些字符的特殊含义。这个时候,就需要用到转义字符\,即使用\?和\*.当然,如果我们要找的是\,则使用\\进行匹配。
注:R中的转义字符则是双斜杠:\\
R中预定义的字符组
代表字符组的特殊符号
stringr包中的重要函数
可见,stringr包中的字符处理函数更丰富和完整(其实还有更多函数),并且更容易记忆。或许速度也会更快。
其他相关的重要函数
windows下处理字符串类型数据最头疼的无疑是编码问题了。这里介绍几个编码转换相关的函数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26