京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS操作:多项测量指标的ROC曲线分析
在前面几讲中,我们已向大家介绍过如何依据一项测量指标设计和评价诊断试验。但在实际临床工作中,我们往往是根据多项指标综合判断病情的。比如,在诊断高血压时,我们会根据年龄、性别、并发症等多个因素同时评价受试者的患病情况。那么在这种情况下,我们应如何判断诊断结果的真实性呢?
一、问题与数据
某呼吸内科医生拟通过性别、年龄、BMI、COPD病史和是否吸烟等因素预测受试者的肺癌患病情况。他招募了85名肺癌患者,259名非肺癌患者,并通过查阅病历、问卷调查的方式收集了上述信息。变量的赋值和部分原始数据见表1和表2。如果该医生依据这几项因素预测受试者是否患肺癌,那么应如何预测,准确性又如何呢?
表1 肺癌危险因素分析研究的变量与赋值
表2 部分原始数据
从本质上讲,该研究也是结局变量为二分类的诊断试验。但是该诊断试验的测量指标很多,应该如何预测每一位受试者是否患肺癌呢?
我们可以通过二分类Logistic回归模型,用性别、年龄、BMI、COPD病史和是否吸烟等因素,计算受试者患肺癌的预测概率。
二、SPSS分析方法
1. 数据录入SPSS
2. Logistic回归分析(关于Logistic回归每一步设置的意义,可参考“SPSS实例教程:二分类Logistic回归”。)
选择Analyze→Regression→Binary Logistic
(1)主对话框设置
将因变量cancer送入Dependent框中,将纳入模型的自变量sex, age, BMI和COPD变量Covariates中,选择Forward: LR的自变量筛选方法(Method对话框)。
(2)Categorical设置
本研究中,COPD是多分类变量,我们指定“无COPD病史”的研究对象为参照组,分别比较“轻/中度”和“重度”组相对于参照组患肺癌的风险。
点击Categorical→将左侧Covariates中的COPD变量送入右侧Categorical Covariates中。在Reference Category的右侧选择First(表示选择变量COPD中,赋值最小的,即“0”作为参照。)→点击Change→点击Continue。
(3)Save设置
点击Save→选择Probabilities→点击Continue。
三、Logistic回归结果
1. 纳入Logistic回归模型的变量
最终模型纳入了性别(sex)、COPD病史(COPD)和吸烟(smoke)三个变量。也就是说,这该Logistic回归模型认为,这三个变量可以预测是否患肺癌,而年龄和BMI并没有预测意义。
2. 个体患肺癌的概率
根据上述Logistic回归的结果,我们可以写出每个受试者根据性别、COPD病史和是否吸烟三个因素,预测是否患肺癌的危险得分Logit(P):
Logit(P)= -3.062 + 0.836*sex(男=1;女=0) + 0.454*COPD(轻度) + 1.281COPD(中/重度) + 1.237*smoke(无=0;曾吸/现吸=1)
并可以按照以下公式计算得到每一个受试者患肺癌的预测概率:
实际上,当点选了上述2.5的操作,运行该回归分析后,SPSS会自动生成每一位受试者的预测概率(PRE_1),而不需要上述的手工计算。
至此,我们就可以根据受试者的真实患病情况和预测概率,评估根据性别、COPD病史和是否吸烟三个因素,预测个体是否患肺癌的准确性了。
四、ROC曲线的绘制
1. 选择Analyze→ROC Curve
2. 主对话框设置
将已知的疾病情况cancer送入State Variable框中,预测概率Predicted probability送入Test Variable中,并在Value of State Variable框中填1→OK。
五、结果解读
SPSS的ROC曲线结果会给出ROC曲线和曲线下面积。
根据结果,我们可以知道该诊断试验的ROC曲线下面积是0.718,判断其准确性,并用于与其他诊断试验的比较。至于评价诊断试验的其它指标,需要我们根据预测概率(PRE_1)确定诊断截点(cut-off值)后再计算,有兴趣的小伙伴可以自己尝试计算哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15