京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据带来的弊病?近因效应
世界上90%的数据都是过去几年里产生的,你可能已经熟知这个统计了。这是真的。我能找到的关于这个表述的最早的陈述之一可以追溯到2013年五月,但这个趋势一直显著地持续着。确实,过去三个世纪以来每两年世界上数据的总量便会提高到十倍——这个比率甚至使得发现处理器性能加倍的摩尔定律都相形见绌。
这样一个信息增长比率所带来的问题之一是现在这个时刻的数据总是比才过去不久的要出现得大得多。想想一下回顾一本描绘你人生前八年的一本相册,从出生到成年。假设你有你人生头两年的两张照片。假定在匹配现在这样一个信息增长比率下,你将会拥有印象深刻的2000张六岁到八岁的照片;20万张十岁到十二岁的;以及惊人的两亿张十六岁到十八岁的照片。也就是说在最后两年里每一秒种便会有不只三张照片产生。
“当你想寻求更长远的视角而开始回顾过去时,你会发现现在的东西太多而过去的东西又太少。”
当然,这并不是全球数据的一个完美的类比。一开始,世界上许多数据的增长都是因为更多的人参与创造出了更多的信息资源以及更庞大更细致的格式。但是关于均衡性的观点是有根据的。如果你打算回顾像上面一样的记录的话或者尝试着分析它,你将发觉离现在越近的东西越会变得毫无意义。记录这么多次有用的信息却更少,为什么会这样呢?
这就是现今如此多大数据被收集与分析所带来的问题。当你想寻求更长远的视角而开始回顾过去时,你会发现现在的东西太多而过去的东西又太少。目光短浅深深地植入在高估以历史为代价的短期趋势的强大的结构倾向中。
大数据所带来的问题之一是现在这个时刻的数据总是比才过去不久的要出现得大得多。(来源:iStock)
为了理解这个的重要性,思考一下社会科学关于近因效应的发现,它描述了人们假设未来的事件将类似于最近的经历的倾向。这也是我们熟知的“可具有性”启发式的另一种说法:依据任何最容易想到的东西进行思考的倾向。这也是一种普遍的心理属性。如果在过去的几年里在你住的地方你已经见证了异常寒冷的夏天,比如,你可能被引导着说出夏天越来越冷了——或者你们当地的气候可能在变冷。实际上你不应该把你读到的任何东西读入数据。你需要运用更长远的眼光去了解关于气候变化趋势的有意义的东西。在短期内,你最好不要随意推测——但我们中有谁能够真的做到呢?
“短期的分析不只是无效的——它们经常是无用的甚至误导人的”
现实生活中多数复杂现象经常也是这样的:如股票市场、经济、公司兴衰、战阵与和平、人际关系以及王朝更迭。短期的分析不单单是无效的——它们经常是无用甚至误导人的。瞧瞧众多经济学家排着队宣布像2009年金融危机这样的事件是不可能发生的,直到它真的发生了。在那种程度上可以做到有效预测的那种概念本身就是问题的一部分。
值得一提的是在决定数据去留时新奇经常是主要的考虑因素。推陈出新:在这个数字趋势的世界上,搜索算法本质上偏向于新鲜事物,所谓的超链停用从最高法院决定到整个社会媒体服务业等各方面十分猖獗。对于当下的偏向从结构上在我们周边的所有科技中已经根深蒂固,尤其要归因于我们大约五年后丢弃我们大多数一度繁荣的机器的喜好。
该怎么做?这不只是一个更擅长保存旧数据的问题——尽管这不能说是个坏主意,考虑到我们对现在于过去的几十年而不是过去几年的保存多无能为力。更重要的是,决定哪些数据是在第一时间值得保存的——并且以知识的名义有意义地剔除信息意味着什么。
我们需要更擅长于决定哪些数据值得在第一时间保存的。
我们需要的是一种我喜欢称为“选择性遗忘”的能力:训练我们的工具更擅长于放下刚刚过去的东西以保持眼光上的连续性。这是一种类似治疗的方式助我们合理安排相册——尽管需要更多的数学。什么情况下两百万张照片不如两千张有价值呢?当样本比较多涉及领域却比较少的时候;当可以提出的问题不那么重要的时候;当提供的细节的级别只是逐步灌输怀疑和只有盲目的自信的时候。
有许多的数据集是不能复原的,当完成的时候价值是极大的:基因序列;人口数据;地理和物理学的困难知识。然而,若科学越不严谨,规模就越可能与质量成反比—更重要的是时间本身就是一个过滤器。我们要么仔细选择忍受什么,有哪些是重要的,还有要带着有意义的心态去捕捉我们后退的过去,要么它的印记被现在不断增加的噪音所替代。
时间的削弱是有多方面的,因为在它仍然是一个限制因素里面有一个至关重要的意义:人的时间和注意力的可用性。企业,个人和政府都有相当多的信息,与他们几年前相比。然而,在白天的日子里他们没有任何可用的关注,董事会成员,首席执行官,民选官员或者几个小时的时间。越来越好的工具的存在帮助决策者对他们所拥有的信息提出有意义的问题-制造者对他们拥有的信息提出有意义的问题-但你只能分析可企及的问题。单纯地积累不是一种答案。在一个越来越大的数据时代,你选择不知道的事情和你所做的一样重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26