
SAS在DATA步中调用PROC步
给大家介绍一种方法,可以在DATA步中调用PROC过程,这样就可以在DATA步中对PROC产生的结果进行操作。
具体如何实现?
首先肯定不是直接在DATA步中写PROC,有些人可能会说用CALL EXECUTE,其实不然。CALL EXECUTE是在DATA步运行之后才调用。
在这里给大家介绍RUN_MACRO这个函数,通过该函数就可实现在DATA步中调用PROC,或者是另一个DATA步。
顾名思义,该函数就是用来调用macro的,但它有它的独特之处:不能在DATA步中使用该函数,只能在FCMP过程中使用(自定义函数中使用)。
因此要实现在DATA步中调用PROC,需要三个步骤:
1.定义一个MACRO,其内容就是一个PROC过程;
2.通过FMCP创建自定义函数,调用上面定义的MACRO;
3.在DATA步中调用自定义函数,即间接调用PROC过程;
下面用一个例子来说明:
创建宏(该宏是利用PROC SQL创建一个数据集,包含一个变量的非重复值)
%macro distinct_values;
%let input_table = %sysfunc(dequote(&input_table));
%let column = %sysfunc(dequote(&column));
%let output_table = %sysfunc(dequote(&output_table));
proc sql;
create table &output_table as
select distinct &column
from &input_table;
%mend;
创建自定义函数(在自定义函数中调用上面定义的宏)
proc fcmp outlib=work.funcs.sql;
function get_distinct_values(input_table $, column $, output_table $);
rc = run_macro('distinct_values', input_table, column, output_table);
return (rc);
endsub;
run;
在DATA步中调用
options cmplib = work.funcs;
data _null_;
rc = get_distinct_values('sashelp.shoes', 'region', 'work.regions');
id=open('work.regions');
if id then nobs=attrn(id,'NOBS');
put nobs;
run;
通过这种方式就可在DATA中调用PROC,从而使用PROC生成的结果。在上面的例子中,最后的DATA步调用PROC生成了数据集WORK.REGIONS,
然后通过OPEN函数打开该数据集,获取到该数据集的观测数。当然你可以干其他的事情。
重点在于:RUN_MACRO调用宏后,会一直等待宏执行完毕后才返回。因此紧接着get_distinct_values自定义函数后就可以使用宏产生的数据。
如果使用CALL EXECUTE调用宏,是在DATA步执行完之后,才调用宏,实际上就是在DATA步之后增加了宏的调用。
注:虽然在第三步调用get_distinct_values之后就可以使用该数据,但不能使用SET WORK.REGIONS; 为什么呢?这是因为SET语句的运行机制决定的。
在程序编译阶段,如果有SET语句,就会将SET的数据集打开,但此时程序还未执行,数据集根本没有生成,因此就会报错,提示数据集不存在。
所以要使用OPEN函数,来对该数据集进行操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08