
SAS在DATA步中调用PROC步
给大家介绍一种方法,可以在DATA步中调用PROC过程,这样就可以在DATA步中对PROC产生的结果进行操作。
具体如何实现?
首先肯定不是直接在DATA步中写PROC,有些人可能会说用CALL EXECUTE,其实不然。CALL EXECUTE是在DATA步运行之后才调用。
在这里给大家介绍RUN_MACRO这个函数,通过该函数就可实现在DATA步中调用PROC,或者是另一个DATA步。
顾名思义,该函数就是用来调用macro的,但它有它的独特之处:不能在DATA步中使用该函数,只能在FCMP过程中使用(自定义函数中使用)。
因此要实现在DATA步中调用PROC,需要三个步骤:
1.定义一个MACRO,其内容就是一个PROC过程;
2.通过FMCP创建自定义函数,调用上面定义的MACRO;
3.在DATA步中调用自定义函数,即间接调用PROC过程;
下面用一个例子来说明:
创建宏(该宏是利用PROC SQL创建一个数据集,包含一个变量的非重复值)
%macro distinct_values;
%let input_table = %sysfunc(dequote(&input_table));
%let column = %sysfunc(dequote(&column));
%let output_table = %sysfunc(dequote(&output_table));
proc sql;
create table &output_table as
select distinct &column
from &input_table;
%mend;
创建自定义函数(在自定义函数中调用上面定义的宏)
proc fcmp outlib=work.funcs.sql;
function get_distinct_values(input_table $, column $, output_table $);
rc = run_macro('distinct_values', input_table, column, output_table);
return (rc);
endsub;
run;
在DATA步中调用
options cmplib = work.funcs;
data _null_;
rc = get_distinct_values('sashelp.shoes', 'region', 'work.regions');
id=open('work.regions');
if id then nobs=attrn(id,'NOBS');
put nobs;
run;
通过这种方式就可在DATA中调用PROC,从而使用PROC生成的结果。在上面的例子中,最后的DATA步调用PROC生成了数据集WORK.REGIONS,
然后通过OPEN函数打开该数据集,获取到该数据集的观测数。当然你可以干其他的事情。
重点在于:RUN_MACRO调用宏后,会一直等待宏执行完毕后才返回。因此紧接着get_distinct_values自定义函数后就可以使用宏产生的数据。
如果使用CALL EXECUTE调用宏,是在DATA步执行完之后,才调用宏,实际上就是在DATA步之后增加了宏的调用。
注:虽然在第三步调用get_distinct_values之后就可以使用该数据,但不能使用SET WORK.REGIONS; 为什么呢?这是因为SET语句的运行机制决定的。
在程序编译阶段,如果有SET语句,就会将SET的数据集打开,但此时程序还未执行,数据集根本没有生成,因此就会报错,提示数据集不存在。
所以要使用OPEN函数,来对该数据集进行操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23