
DI是人类通向AI的必经之路
早在1980年,未来学家托夫勒在《第三次浪潮》中就提到“大数据”一词。而37年后的今天,普通人对于数据依然是云里雾里。但这并不妨碍人类对数据的追寻,越来越多的人开始相信,数据之于人类的变革正在进行,并且远比想象中的迅猛。数据应用的终点是AI(人工智能)吗?我们会因为机器人失业吗?这样的竞争压力又是否会催生科幻小说里的新人类?
2017UBDC全域大数据峰会,将“DI的力量”作为主题,DI即数据智能,并首次给出答案:DI是人类通向AI的必经之路。大会将对数据的无限想象与现实应用紧密结合,从高处着眼、从小处着手,聚焦当下的数据价值,探讨数据赋能下的新零售、新营销、新互联网业务、新金融风控,并为你打开关于数据的谜团。
下面,抢先剧透关于DI的三个问题:
DI是什么?
DI:Data Intelligence,即数据智能。
DI(数据智能)以数据为基础,不局限于对数据本身的统计和分析,而是运用先进的研究模型对其潜在价值的深入挖掘。典型场景包括:推广的智能策略服务、用户体验的智能调优、以线上智能分析赋能线下等。
我们不光知其然还要知其所以然,数据不是结果,而是策略,最终再通过恰当的形式得以执行和调优。数据服务由单调的关联展示,走向自主的学习预判,越来越智能。相信DI+各行各业,将会产生更振奋和深远的影响。
数据演进的三个阶段
1BI商业智能阶段(过去)
数据驱动业务,商业模式以B2B为主,数据的能力主要集中在对业务的监测,这时候大量的人工成本不可避免,分析人员的水平、能力直接导致决策的可靠性。典型产品包括:各种统计工具、销售管理系统、运营管理系统等。
2DI数据智能阶段(现在)
数据驱动智能,商业模式以B2B2C、B2B为主,数据能力重点在“因果分析”,即探究为什么。对业务的全方位数据监测成为可能后,分析人员成为瓶颈,由数据智能替代人肉分析,完成策略、业务、数据高效自动循环。目前,以【友盟+】的U-Dplus等新型工具为代表,不仅实现传统统计功能,还将垂直业务的分析方法纳入其中,大大降低了使用门槛。
从宏观层面,DI是人类通向AI的必经之路,大量思想、经验、方法论散落各个行业专家的脑中,这已经成为制约发展的严重问题。我们解决了业务的数据化后,就要解决知识的信息化,即数据智能。
只有经历了DI时代,我们才有可能迎来AI时代!
3AI人工智能阶段(未来)
AI核心是智能的自我进化,将是人类的一次飞跃;商业模式将是B2C、C2C。
在DI的阶段,我们将知识信息化,赋予机器;在AI时代,机器将脱离现有数据的束缚,像人一样,拥有自主思考、学习、判断、进化的能力。
大胆的想象一下,如果说几百万年前,人类从猿人逐渐进化成现代人,是人类进化史的第一次飞跃;那么,下一轮进化将是人工智能,从对人的意识、思维的模拟,到像人那样思考,甚至超过人的智能。
AI是一套庞大系统,不仅局限在交互及终端中,我们造出了“人”,还要赋予其“灵魂”,使其具备自主的思维逻辑。由此,机器学习是AI的核心,DI是使机器学习成为可能。
DI落地的重要条件
1首先是数据的全方位采集
人人、物物都可以生产数据。但是,从当下看,只有少数的互联网科技公司实现了全业务数据化,大量传统企业还停留在非数据化、或部分数据化时代。仅从数据的采集与管理层面,就有很大的技术门槛。比如,在【友盟+】,每天采集的数据就有280亿之多,如何将这些数据加工-处理-挖掘-输出,是需要数据、算法、云能力、商业应用等多种能力的融合。
现在业内普遍的做法,是建立数据处理中心,可以理解为数据加工厂。【友盟+】认为,面向DI、AI的数据处理平台,应该是一体化、标准化、开放性、高安全、秒级处理、高弹性的数据智能平台。它能帮助企业处理现有的数据业务,应对复杂多变的市场环境,在强调标准化的同时,兼具灵活性与开放性,并且能直接与业务对接,形成从数据采集到应用的闭环。
2其次是知识的信息化
人的需求,从未改变;人即商业,商业即人。最核心是认知、认可、行动。把散落的思想、经验、方法论有机组织起来,用数据来驱动,用机器来提升决策效率,快速试错、反复迭代。结合现有的商业模式,我们可以从对人的洞察、对人的营销、对人的行动策略谈起。
由此,2017UBDC峰会,特别策划三大分论坛:数据化运营专场、广告营销专场、新零售专场,全球的顶级企业将讲述基于DI数据智能的新玩法、新观点。
在现阶段,数据应用的重点是帮助企业重塑人货场、业务链,深入了解消费者,让大量的数据运转出商业价值,成为社会经济的基础智能支撑。而在可以预见的将来,数据将超越今天的智能终端,成为每个人身体和思想的延伸,创造“你”的数据价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18