
博为大数据采集技术助力多源异构电力系统数据融合
电力工业作为国家重大的能源支撑体系,应用领域越来越广泛。而环境监管要求的日趋严格以及各国能源政策的调整,对电力系统提出了节能、绿色、安全、自愈、可靠运行的要求,传统的电力网络已经难以满足这些要求。而随着互联网、云计算、物联网技术的应用与普及,让被称为IT行业又一颠覆性技术革命的“大数据”诞生了。电力+大数据,成为电力系统应对新需求、新形势的出路。
电力数据的多源与“大”早在2006年,国家的“SG186工程”就提出了将全国电网建成“一体化企业级信息集成平台”的目标,以保证电网的数据能“一处录入,全网使用”,为信息的真实性、一致性和完整性提供保障。
电力数据在行业内部主要涉及电力生产和电力服务的各环节数据,从发电、输电、变电、配电、用电到调度,每个环节都会产生海量数据,如电厂发电过程中的能源基准参数、电能生产、运行监控和设备检修等数据;电力企业运行中的用户资料、电力市场等信息;配电公司管理中的人才物资、协同办公、资本运作等数据,一起构成了多源、异构、多维、多形式的电力数据资源。
同时,电力系统的数据也满足大数据“大”的特点:常规SCADA系统按采样间隔3-4S计算,10000个采集点一年能产生1.03TB数据;国家电网公司的2.4亿块智能电表,年产生数据量约为200TB;而整个国家电网公司信息系统灾备中心的数据总量,接近15 PB。不仅仅如此,GIS、EMS、DTS等系统也在随时产生、传输与存储数据,而且随着电能应用领域的不断拓宽与电力信息化的不断深入,电力数据正在以前所未有的速度增长。
异构数据融合技术是实现电力大数据的基础
电力数据如何为智能电网、智慧城市以及节能减排服务,成为全世界都在研究的课题。
在我国,由于各级电力调度中心在信息化建设过程,各单位、各部门是以阶段性、功能性的方式推进,缺乏数据输出的标准化规定,导致电网从诞生之日起,就积累了大量采用不同存储方式、不同数据模型、不同编码规则的电网参数,这些数据既有简单的文件数据库,也有复杂的网络数据库,其构成了电网的异构数据源。
博为软件独创异构大数据融合技术,无需多软件间的接口对接,直接基于windows环境采集各个系统之间的多源异构数据,并实时输出结构化数据,该技术广泛适用于需要进行数据融合、数据迁移的各个行业。在电力系统,博为软件可以进行电力资产全寿命周期管理、营销和配电协调管理,从而逐渐形成以数据为中心的企业信息化管理系统,促进数据资源共享,发挥大数据的价值。
电力大数据将改变什么?电力大数据的价值在于通过挖掘数据之间的关系和规律,在保证供电充裕度、优化电力资源配置以及辅助政府决策、能源利用等方面将会产生颠覆性作用:
通过电力用户特征分析发现用电规律,从需求侧预测电能供给,从而指导电力生产,改变现有通过粗犷式一定量的备用电容应对紧急情况的方式,增加电能的利用率。同时,通过用户用电习惯分析,也有利于电力营销的进行。
通过电力大数据可以清楚的知道全国电网的分布情况与电力使用情况,发现电网布局或者发、输、变电环节的不合理现象,让政府的相关决策以数据为基础,改变“拍脑袋”定方案模式,让电网更科学、更智能。电力大数据因其全生命周期性、全系统覆盖的特征,能通过数据发现电力生产与电力服务之间的问题,预防大规模停电的发生,在保证供电稳定性以及灾害天气时电力的恢复速度方面,提供了坚强后盾。
电力作为生产、生活中必不可少的基础能源系统,是构筑绿色、节能、便利的智慧城市系统和发展“一次性能源的清洁替代和终端能源的电能替代”的大能源系统的枢纽环节,精准的电力大数据无疑是该枢纽中的“核心”,起着牵一发而动全身的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29