
R语言绘图之页面布局
par()、layout()、split.screen()函数
1. par()函数的参数详解
函数par()可以用来设置或者获取图形参数,par()本身(括号中不写任何参数)返回当前的图形参数设置(一个list);若要设置图形参数,则可用par(tag = value)的形式,其中tag的详细说明参见下面的列,value就是参数值,例如:
par(mar = c(4, 4, 1, 0.5), bg = "yellow") # 设置边距参数和背景色
par(pin=c(2,3)) #定义图形为2英寸宽,3英寸高
par(lwd=2,cex=1.5) #线条为默认的2倍宽,符号为默认的1.5倍
par(cex.axis=0.75,font.axis=3) #坐标轴文字缩放为原来的75%,斜体
col, pch, cex, lty, lwd 这些参数的意思与par()中的参数基本相同,有所区别的是,par()中这些参数只能设置一个单值,而这里可以对它们设置一个向量,这个向量的值将依次运用到各个元素上,若向量长度短于元素个数,那么向量会被循环使用,直到所有的元素都被画出来,事实上,向量的循环使用也是R图形参数的一大特点。
2. layout():mat用矩阵设置窗口的划分,矩阵的0元素表示该位置不画图,非0元素必须包括从1开始的连续的整数值,比如:1……N,按非0元素的大小设置图形的顺序。widths用来设置窗口不同列的宽度,heights设置不同行的高度。par()的mfcol,和mfrow参数也有类似layout的功能。layout()函数的一般形式为layout(mat),mat为一矩阵,mat元素的数量决定了一个output device被等分成几份相同元素为一块。
layout(matrix(c(1,2,3,0,2,3,0,0,3),nr=3)) matrix有9个元素,具有这样的形式:
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 2 2 0
[3,] 3 3 3
把这个矩阵传入layout函数,我们就能得到这样的output device
如此,figure1占据了左上角的一个格子,第二行的前两个格子属于figure2,figure3占满最下一行的三个格子。
layout(matrix(1:4,2,2)) #将当前装置分割为矩阵2行2列的布局
[,1] [,2]
[1,] 1 3
[2,] 2 4
layout.show(4) #显示绘图装置分割好的1到4部分;
查看下面代码的不同之处:
layout(matrix(1:6,3,2)) #将当前装置分割为3行2列的布局
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
layout.show(6) #显示布局的编号
layout(matrix(1:6,2,3))#将当前装置分割为2行3列布局
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
layout.show(6)#显示布局编号
layout(matrix(c(1:3,3),2,2)) #建立矩阵,将装置分割为3部分
[,1] [,2]
[1,] 1 3
[2,] 2 3
layout.show(3) #显示布局编号
m<-matrix(1:4,2,2);m #建立矩阵m,2列2行
layout(m,widths=c(1,3),heights=c(3,1)) #将当时装置按照m进行划分,宽度之比为1:3,高度之比为3:1
layout.show(4)
m<-matrix(c(1,1,2,1),2,2);m #建立矩阵
layout(m,widths=c(2,1),heights=c(1,2)) #按照矩阵编号进行分割,编号相同的为同一块,宽度为2:1,高度为1:2
layout.show(2)
m<-matrix(0:3,2,2)#,注意,此矩阵中有0,0是不绘图的,可以查看一下效果
layout(m,c(1,3),c(1,3)) #行为1:3,列为1:3
layout.show(3)
2. 案例一:
attach(mtcars)
opar<-par(no.readonly=TRUE)#保存默认设置
par(mfrow=c(2,2))#将画布分割为2*2格局
plot(wt,mpg,main="Scatterplot of wt vs. mpg")
plot(wt,disp,main="Scatterplot of wt vs disp")
hist(wt, main="Histogram of wt")
boxplot(wt,mian="Boxplot of wt")
par(opar)
detach(mtcars)
案例二:
attach(mtcars)
opar<-par(no.readonly=TRUE)
par(mfrow=c(3,1))# 将画布分割为3行,1列格局
hist(wt)
hist(mpg)
hist(disp)
par(opar)
detach(mtcars)
案例三:
attach(mtcars)
layout(matrix(c(1,1,2,3),2,2,byrow = TRUE))
hist(wt)
hist(mpg)
hist(disp)
detach(mtcars)
3. split.screen函数
split.screen(c(1,2)):将当前的绘画装置分割为2块,分别为1号2号,可以通过screen(1)或screen(2)进行选择,但此时的分割通常是按水平分割的,如果进行进详细的分割,可以用layout函数。
screen()选择绘图区域,screen(n = , new = TRUE)
eraser.screen() 清除选中的绘图区域,erase.screen(n = )
close.screen() 移除特定的选区,close.screen(n, all.screens = FALSE)
screen Figs中的数字
split.screen()分割后,其余的函数才能使用。若无参数,则返回分割后小区域的编号,以向量的形式出现
close.screen退出分割,如果关闭当前的区域(即分割后的小区域),则进入下一个小区域,close.screen(all = TRUE)表示退出分割状态
例子:
par(bg = "white") # 白色背景
split.screen(c(2, 1)) # 分为上下两个屏,2行1列
split.screen(c(1, 3), screen = 2) # 将2屏再细分为3个小屏,即2屏分为1行3列
screen(1) # 选中1屏
plot(10:1)
screen(4) # 选4屏
plot(10:1)
close.screen(all = TRUE) # 退出分屏模式
split.screen(c(2, 1)) # 分为上下2个屏
split.screen(c(1, 2), 2) # 将下屏分为2个屏
plot(1:10) # 在第3屏绘图,此时为当前激活的屏
erase.screen() # 清除当前屏
plot(1:10, ylab = "ylab 3")
screen(1) # 选1屏
plot(1:10)
screen(4) # 激活4屏
plot(1:10, ylab = "ylab 4")
screen(1, FALSE) # 返回1屏,但不清空1屏,如果为screen(1,TRUE),则清空1屏
plot(10:1, axes = FALSE, lty = 2, ylab = "") # 加点
axis(4) # 右边加坐标轴
title("Plot 1")
close.screen(all = TRUE) # 退出分屏模式
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15