京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS中最常用的10个命令
SAS是乔伊平时学习中常用到的数据处理软件之一。在处理大批量数据时,SAS不能说太好用呢。SAS也是学习起来十分简单的一个软件,掌握一些基本的命令,就可以满足日常的数据处理需求。
01
proc sort data= aout= bnodup; bystkcd date; run;
proc sort 是特别特别常用到的,因为许多后续命令都要求数据是按照一定格式排列的。比如下面会提到的merge和 first/last。此外,nodup允许我们使用sort命令来去除重复观测值。
02
datad; mergeb c; bystkcd date;run;
merge 可以在数据步中实现两个数据集合的合并。在by选项可以定义根据那些变量进行数据的合并。比如在上面给出的例子中,就是根据股票代码(stkcd)和日期(date)进行合并的。
03
datae; setb; bystkcd date; iffirst.date then delete; iflast.date then delete;run;
有时候,我们可能只需要一个对象所有日期的第一个或者最后一个观测值。这时候first和last就显得特别好用啦。先用前面所提到的sort先对数据集进行排序,然后在数据步先by排序的变量,接着就可以使用first和last对第一个和最后一个观测值进行处理。
04
proc expand data=crsp_m out=umd;
bypermno;
iddate;
convert ret = cum_return / transformin=(+1) transformout=(MOVPROD 6 -1);
quit;
如果需要滚动求和(Rolling average)或者滚动求积(Rolling product),proc expand是再方便不过了。以上面这个小程序为例子,我们要对crsp_m这个数据集进行处理,处理完成的数据集命名为umd。 上面的程序实现的就是对每一只股票(permno)在一个日期(id)计算一个累积6个月收益cum_return。其中cum_return可以表达如下:
cumreturn=(1+ret−1)(1+ret−2)(1+ret−3)(1+ret−4)(1+ret−5)(1+ret−6)-1
05
data cmpst;
setcmpst_raw;
dodate = rdq-90tordq+10;
output;
end;
run;
采用事件研究方法时,需要根据事件日构建事件窗。这时候可以利用上面例子的方式利用do实现,不过需要注意的是不要把output和end落下了,不然会报错的哦。上面的例子就是根据时间rdq,构建事件窗,事件窗是事件前90天到事件后10天。
06
proc means data= crsp_mnwaynoprint;
classyear permno;
varret;
outputout =stat mean= std= ;
run;
我们还可能还常常需要求一个对象在给定时间内某变量的均值,标准差等统计值。这时候就用proc means。 上面的例子中,输入是股票的月收益率,输出送每只股票每年的月收益率的均值和标准差。加入nway是因为避免在输出的数据集stat中输出总体均值,标准差。
07
proc import out= crsp_m datafile= "C:\crsp_m.csv" dbms=csv replace; getnames=yes;run;
proc export data= results outfile="C:\results.xlsx" dbms=xlsxreplace;
label;
run;
然后我们可能常常需要导入和导出数据xlsx,xls,和csv格式的文件。一般会用到proc import 和proc export。用法就如上,不过需要注意的是,dbms需要与文件后缀名保持一致,所以记得改哦。
08
proc rank data=crsp_mout=umd group=10;
bydate;
varcum_return;
ranksmomr;
run;
在一些情景中,需要将样本按照某一变量的大小分成几组。 利用proc rank, 就可以轻松通过group来定义你分组的个数,通过var给出分组所依据的变量。ranks 后定义了分组对应的变量名。
09
proc univariate data=crsp_m noprint;
whereexchcd = 1 ;
varsize;
bydate sic ;
outputout= nyse_bp pctlpts= 10 20 30 pctlpre= sizedec ;
run;
proc univariate的功能和proc rank很相似, 不过它输出的是一个样本中某一变量的分位数,根据这个分位数,我们可以进一步地对样本进行分组。 那在什么情况下我们会用到proc univariate呢?一个简单的例子就是我们需要对A 样本根据x 变量进行分组,但是分组是基于在B样本中x变量的分位数。 这时候先利用proc univariate B样本得到x变量的分位数,然后在用得到的分位数来对A样本进行分组。在读文献的时候,经常会遇到样本包含了NYSE,NASDAQ和AMEX三个交易所的股票,然后进行分组的时候只用NYSE子样本(NYSE Breakpoints)。
10
proc sql; create tablecrsp_m3as
selecta.*, b.*
fromcrsp_m2asa,nyse_bpasb
wherea.date=b.dateanda.sic = b.sic;
quit;
除了在数据步使用merge来进行数据集的合,你还可以使用proc sql来进行merge。他们两者的功能相似,不过在进行一对多的合并的时候使用merge容易出错,所以这时候对推荐使用sql。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15