
sas信用评分之不用检查异常值的最优分组
今天的更新比以往晚了一天,假期综合症第一天,我到现在已经喝了第三杯咖啡,实现上周的预告,这种更新一个不用检查异常值的数值变量最优分组。其实这代码我本来不想拿出来,我觉得这代码估计能卖点钱,但是介于我是一个不敢赚你们钱的博主,所以还是拿出来吧。本篇文章最后有惊喜。
首先我们先说下,这的代码的思路,为什么不用检查异常值呢。其实是这样子的,我把等量分组和最优分组结合起来了,即保证了最小组的数量也保证了不要因为某些异常值导致分组的过拟合。也少去人工的手动分组。
譬如,有一个年龄的分组,那么我会先用等量分组先分成20组,这时候注意了,就是前后会有极小极大值,就算是异常值,这时候因为你分成了20组,所以极小值以及极大值就被包含在第一组以及最后一组中,以1和20代替了。我相信我这么说你应该可以理解。
至于这等量分组的代码用的是proc rank过程去分的,具体可以参考:proc rank过程
等量分组的代码在这篇文章中:sas信用评分之手动对数值变量分组
然后将产出的结果映射到原数据中再丢进去最优分组,最优分组的代码在这篇文章中:sas信用评分之第二步变量筛选。再丢进去最优分组的代码的时候,需要将等量分组映射到原数据集中,映射代码如下:
/*这个宏是在%data_split后面的执行的,所以这里需要的数据集有%data_split中产生的以"_iv"为后缀的,"_RANK"的数据集*/
data:填入原数据集
id:填入主键
ddvar:因变量
%macro map(data,id,ddvar);
proc sql noprint;
select col_name into: varlist separated by ' ' from &data._IV;
%let nVar=&SQLOBS;
quit;/*从细分后的字典表中得到待填充的变量*/
%put &varlist.;
data &data._woe;
set &data.(keep=&id. &ddvar.);
run;/*首先获取相应的识别标识及Y值*/
data &data._1(drop=i);
set &data.;
array arr1{*} _NUMERIC_;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
arr1(i)=-999;
end;
end;
run;
%do i=1 %to &nVar;
%let var = %scan(&varlist, &i);
data V ;
set &data._1(keep=&id. &var.);
run;/*找出待填充变量的取值,将空值填充为1000000000*/
data rank;
set &data._RANK;
where col_name="&var.";
run;/*找出待填充变量的配置表相关信息*/
proc sql noprint;
create table WOE AS
select I.&id., B.clus as &var.
from V AS I
left join rank AS B
ON I.&var. > b.low AND I.&var. <= B.up
;
quit;/*通过上、下界进行填充*/
proc sort data=WOE;
by &id.;
run;
proc sort data=&data._woe;
by &id.;
run;
data &data._woe;
merge &data._woe woe;
by &id.;
run;/*合并所有的变量woe*/
%end;
%mend;
我希望你们真心想用这部分代码分组的,你们要自己看懂代码,学习这种东西不是问出来,都是要自己动手琢磨的。我自认为我不是一个聪明的人,但我是喜欢的东西,我会很乐于去探索,所以你也可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07