京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sas信用评分之不用检查异常值的最优分组
今天的更新比以往晚了一天,假期综合症第一天,我到现在已经喝了第三杯咖啡,实现上周的预告,这种更新一个不用检查异常值的数值变量最优分组。其实这代码我本来不想拿出来,我觉得这代码估计能卖点钱,但是介于我是一个不敢赚你们钱的博主,所以还是拿出来吧。本篇文章最后有惊喜。
首先我们先说下,这的代码的思路,为什么不用检查异常值呢。其实是这样子的,我把等量分组和最优分组结合起来了,即保证了最小组的数量也保证了不要因为某些异常值导致分组的过拟合。也少去人工的手动分组。
譬如,有一个年龄的分组,那么我会先用等量分组先分成20组,这时候注意了,就是前后会有极小极大值,就算是异常值,这时候因为你分成了20组,所以极小值以及极大值就被包含在第一组以及最后一组中,以1和20代替了。我相信我这么说你应该可以理解。
至于这等量分组的代码用的是proc rank过程去分的,具体可以参考:proc rank过程
等量分组的代码在这篇文章中:sas信用评分之手动对数值变量分组
然后将产出的结果映射到原数据中再丢进去最优分组,最优分组的代码在这篇文章中:sas信用评分之第二步变量筛选。再丢进去最优分组的代码的时候,需要将等量分组映射到原数据集中,映射代码如下:
/*这个宏是在%data_split后面的执行的,所以这里需要的数据集有%data_split中产生的以"_iv"为后缀的,"_RANK"的数据集*/
data:填入原数据集
id:填入主键
ddvar:因变量
%macro map(data,id,ddvar);
proc sql noprint;
select col_name into: varlist separated by ' ' from &data._IV;
%let nVar=&SQLOBS;
quit;/*从细分后的字典表中得到待填充的变量*/
%put &varlist.;
data &data._woe;
set &data.(keep=&id. &ddvar.);
run;/*首先获取相应的识别标识及Y值*/
data &data._1(drop=i);
set &data.;
array arr1{*} _NUMERIC_;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
arr1(i)=-999;
end;
end;
run;
%do i=1 %to &nVar;
%let var = %scan(&varlist, &i);
data V ;
set &data._1(keep=&id. &var.);
run;/*找出待填充变量的取值,将空值填充为1000000000*/
data rank;
set &data._RANK;
where col_name="&var.";
run;/*找出待填充变量的配置表相关信息*/
proc sql noprint;
create table WOE AS
select I.&id., B.clus as &var.
from V AS I
left join rank AS B
ON I.&var. > b.low AND I.&var. <= B.up
;
quit;/*通过上、下界进行填充*/
proc sort data=WOE;
by &id.;
run;
proc sort data=&data._woe;
by &id.;
run;
data &data._woe;
merge &data._woe woe;
by &id.;
run;/*合并所有的变量woe*/
%end;
%mend;
我希望你们真心想用这部分代码分组的,你们要自己看懂代码,学习这种东西不是问出来,都是要自己动手琢磨的。我自认为我不是一个聪明的人,但我是喜欢的东西,我会很乐于去探索,所以你也可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31