京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sas信用评分之不用检查异常值的最优分组
今天的更新比以往晚了一天,假期综合症第一天,我到现在已经喝了第三杯咖啡,实现上周的预告,这种更新一个不用检查异常值的数值变量最优分组。其实这代码我本来不想拿出来,我觉得这代码估计能卖点钱,但是介于我是一个不敢赚你们钱的博主,所以还是拿出来吧。本篇文章最后有惊喜。
首先我们先说下,这的代码的思路,为什么不用检查异常值呢。其实是这样子的,我把等量分组和最优分组结合起来了,即保证了最小组的数量也保证了不要因为某些异常值导致分组的过拟合。也少去人工的手动分组。
譬如,有一个年龄的分组,那么我会先用等量分组先分成20组,这时候注意了,就是前后会有极小极大值,就算是异常值,这时候因为你分成了20组,所以极小值以及极大值就被包含在第一组以及最后一组中,以1和20代替了。我相信我这么说你应该可以理解。
至于这等量分组的代码用的是proc rank过程去分的,具体可以参考:proc rank过程
等量分组的代码在这篇文章中:sas信用评分之手动对数值变量分组
然后将产出的结果映射到原数据中再丢进去最优分组,最优分组的代码在这篇文章中:sas信用评分之第二步变量筛选。再丢进去最优分组的代码的时候,需要将等量分组映射到原数据集中,映射代码如下:
/*这个宏是在%data_split后面的执行的,所以这里需要的数据集有%data_split中产生的以"_iv"为后缀的,"_RANK"的数据集*/
data:填入原数据集
id:填入主键
ddvar:因变量
%macro map(data,id,ddvar);
proc sql noprint;
select col_name into: varlist separated by ' ' from &data._IV;
%let nVar=&SQLOBS;
quit;/*从细分后的字典表中得到待填充的变量*/
%put &varlist.;
data &data._woe;
set &data.(keep=&id. &ddvar.);
run;/*首先获取相应的识别标识及Y值*/
data &data._1(drop=i);
set &data.;
array arr1{*} _NUMERIC_;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
arr1(i)=-999;
end;
end;
run;
%do i=1 %to &nVar;
%let var = %scan(&varlist, &i);
data V ;
set &data._1(keep=&id. &var.);
run;/*找出待填充变量的取值,将空值填充为1000000000*/
data rank;
set &data._RANK;
where col_name="&var.";
run;/*找出待填充变量的配置表相关信息*/
proc sql noprint;
create table WOE AS
select I.&id., B.clus as &var.
from V AS I
left join rank AS B
ON I.&var. > b.low AND I.&var. <= B.up
;
quit;/*通过上、下界进行填充*/
proc sort data=WOE;
by &id.;
run;
proc sort data=&data._woe;
by &id.;
run;
data &data._woe;
merge &data._woe woe;
by &id.;
run;/*合并所有的变量woe*/
%end;
%mend;
我希望你们真心想用这部分代码分组的,你们要自己看懂代码,学习这种东西不是问出来,都是要自己动手琢磨的。我自认为我不是一个聪明的人,但我是喜欢的东西,我会很乐于去探索,所以你也可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17